Yunchao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054987/publications.pdf

Version: 2024-02-01

100	8,123	70961 41 h-index	88
papers	citations		g-index
107	107	107	9125
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 2018, 9, 2249.	5.8	676
2	Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1604436.	11.1	643
3	53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm Whiteâ€Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1702910.	11.1	563
4	Sulfur-Doped Graphene Quantum Dots as a Novel Fluorescent Probe for Highly Selective and Sensitive Detection of Fe ³⁺ . Analytical Chemistry, 2014, 86, 10201-10207.	3.2	519
5	Noninjection Gram-Scale Synthesis of Monodisperse Pyramidal CulnS ₂ Nanocrystals and Their Size-Dependent Properties. ACS Nano, 2010, 4, 5253-5262.	7.3	386
6	Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chemical Communications, 2015, 51, 2544-2546.	2.2	297
7	Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nature Biomedical Engineering, 2020, 4, 704-716.	11.6	243
8	Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon, 2014, 70, 149-156.	5 . 4	232
9	Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 6820-6835.	2.7	225
10	High-Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTe1–x Nanocrystals. Advanced Functional Materials, 2006, 16, 1705-1716.	7.8	212
11	Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale, 2015, 7, 11727-11733.	2.8	187
12	Electroluminescent Warm White Lightâ€Emitting Diodes Based on Passivation Enabled Bright Red Bandgap Emission Carbon Quantum Dots. Advanced Science, 2019, 6, 1900397.	5.6	174
13	Exceptionally High Payload of the IR780 lodide on Folic Acid-Functionalized Graphene Quantum Dots for Targeted Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22332-22341.	4.0	167
14	Ligand-Controlling Synthesis and Ordered Assembly of ZnS Nanorods and Nanodots. Journal of Physical Chemistry B, 2004, 108, 16002-16011.	1.2	165
15	Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe ³⁺ in Cancer Stem Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23958-23966.	4.0	163
16	Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1â^'xnanocrystals. Nanotechnology, 2006, 17, 4041-4047.	1.3	158
17	Carbon dots: a booming material for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 821-836.	3.2	150
18	Controlled synthesis of CdS nanorods and hexagonal nanocrystals. Journal of Materials Chemistry, 2003, 13, 2641.	6.7	131

#	Article	IF	CITATIONS
19	Red-Emissive Carbon Quantum Dots for Nuclear Drug Delivery in Cancer Stem Cells. Journal of Physical Chemistry Letters, 2020, 11, 1357-1363.	2.1	127
20	Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1-xS Alloyed Nanocrystals. Advanced Functional Materials, 2005, 15, 433-441.	7.8	121
21	Graphene quantum dots as smart probes for biosensing. Analytical Methods, 2016, 8, 4001-4016.	1.3	116
22	Fluorescence–phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs. Chemical Science, 2019, 10, 9801-9806.	3.7	115
23	A facile route to synthesize chalcopyrite CulnSe2nanocrystals in non-coordinating solvent. Nanotechnology, 2007, 18, 025602.	1.3	113
24	Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Research, 2019, 12, 1669-1674.	5.8	107
25	Recent advances in white light-emitting diodes of carbon quantum dots. Nanoscale, 2020, 12, 4826-4832.	2.8	98
26	DNA Detection on Plastic:Â Surface Activation Protocol To Convert Polycarbonate Substrates to Biochip Platforms. Analytical Chemistry, 2007, 79, 426-433.	3.2	91
27	Gramâ€Scale Synthesis of Highly Efficient Rareâ€Earthâ€Elementâ€Free Red/Green/Blue Solidâ€State Bandgap Fluorescent Carbon Quantum Rings for White Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2021, 60, 16343-16348.	7.2	70
28	Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant. Journal of Physical Chemistry B, 2004, 108, 5192-5199.	1.2	69
29	Cobalt-based metal organic frameworks: a highly active oxidase-mimicking nanozyme for fluorescence "turn-on―assays of biothiol. Chemical Communications, 2020, 56, 659-662.	2.2	68
30	Ultrastable and Lowâ€Threshold Random Lasing from Narrowâ€Bandwidthâ€Emission Triangular Carbon Quantum Dots. Advanced Optical Materials, 2019, 7, 1801202.	3.6	67
31	Electrochemical studies of the effects of the size, ligand and composition on the band structures of CdSe, CdTe and their alloy nanocrystals. Physical Chemistry Chemical Physics, 2014, 16, 4778.	1.3	65
32	Ultrabroad-band, red sufficient, solid white emission from carbon quantum dot aggregation for single component warm white light emitting diodes with a 91 high color rendering index. Chemical Communications, 2019, 55, 6531-6534.	2.2	62
33	Angiopoietin-like proteins 3, 4 and 8: regulating lipid metabolism and providing new hope for metabolic syndrome. Journal of Drug Targeting, 2014, 22, 679-687.	2.1	60
34	Digitized Molecular Diagnostics: Reading Disk-Based Bioassays with Standard Computer Drives. Analytical Chemistry, 2008, 80, 8216-8223.	3.2	54
35	Electrochemical controlled synthesis and characterization of well-aligned IrO2 nanotube arrays with enhanced electrocatalytic activity toward oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2013, 688, 269-274.	1.9	54
36	Red Phosphorescent Carbon Quantum Dot Organic Framework-Based Electroluminescent Light-Emitting Diodes Exceeding 5% External Quantum Efficiency. Journal of the American Chemical Society, 2021, 143, 18941-18951.	6.6	54

#	Article	IF	CITATIONS
37	The influence of gold nanoparticle modified electrode on the structure of mercaptopropionic acid self-assembly monolayer. Electrochimica Acta, 2005, 51, 427-431.	2.6	53
38	Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries. Electrochimica Acta, 2015, 159, 61-65.	2.6	51
39	A novel colorimetric potassium sensor based on the substitution of lead from G-quadruplex. Analyst, The, 2013, 138, 856-862.	1.7	50
40	Na ⁺ -Induced Conformational Change of Pb ²⁺ -Stabilized G-Quadruplex and Its Influence on Pb ²⁺ Detection. Analytical Chemistry, 2016, 88, 9375-9380.	3.2	45
41	Solution Grown Single-Unit-Cell Quantum Wires Affording Self-Powered Solar-Blind UV Photodetectors with Ultrahigh Selectivity and Sensitivity. Journal of the American Chemical Society, 2019, 141, 3480-3488.	6.6	44
42	Reading Disc-Based Bioassays with Standard Computer Drives. Accounts of Chemical Research, 2013, 46, 258-268.	7.6	40
43	Electrochemical Preparation of Nâ€Doped Cobalt Oxide Nanoparticles with High Electrocatalytic Activity for the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2014, 20, 3457-3462.	1.7	39
44	Exonuclease I-Hydrolysis Assisted Electrochemical Quantitation of Surface-Immobilized DNA Hairpins and Improved HIV-1 Gene Detection. Analytical Chemistry, 2018, 90, 8147-8153.	3.2	38
45	Nitrogen-Rich D-Ï€-A Structural Carbon Quantum Dots with a Bright Two-Photon Fluorescence for Deep-Tissue Imaging. ACS Applied Bio Materials, 2018, 1, 853-858.	2.3	37
46	Controlled synthesis of 3D nanostructured Cd4Cl3(OH)5templates and their transformation into Cd(OH)2and CdS nanomaterials. Nanotechnology, 2006, 17, 772-777.	1.3	34
47	Ligand-Tuned Shape Control, Oriented Assembly, and Electrochemical Characterization of Colloidal ZnTe Nanocrystals. Chemistry of Materials, 2010, 22, 4632-4641.	3.2	33
48	Fe–N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants. Analyst, The, 2021, 146, 207-212.	1.7	32
49	Ultralong CdTe Nanowires: Catalystâ€Free Synthesis and Highâ€Yield Transformation into Core–Shell Heterostructures. Advanced Functional Materials, 2012, 22, 2402-2411.	7.8	31
50	Carbon dots: An innovative luminescent nanomaterial. Aggregate, 2022, 3, e108.	5.2	31
51	Thin-layer electrochemistry of ferrocenylbenzene derivatives: Intramolecular electronic communication. Electrochimica Acta, 2008, 53, 7720-7725.	2.6	30
52	DNA Molecular Beacon-Based Plastic Biochip: A Versatile and Sensitive Scanometric Detection Platform. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21788-21797.	4.0	30
53	Applications of carbon dots on tumour theranostics. View, 2021, 2, 20200061.	2.7	30
54	Liposome Induced Self-Assembly of Gold Nanoparticles into Hollow Spheres. Langmuir, 2004, 20, 3734-3739.	1.6	29

#	Article	IF	CITATIONS
55	Aggregation-induced preparation of ultrastable zinc sulfide colloidal nanospheres and their photocatalytic degradation of multiple organic dyes. Physical Chemistry Chemical Physics, 2015, 17, 14532-14541.	1.3	29
56	Ultrathin ZnSe nanowires: one-pot synthesis via a heat-triggered precursor slow releasing route, controllable Mn doping and application in UV and near-visible light detection. Nanoscale, 2017, 9, 15044-15055.	2.8	27
57	Exonuclease I-Assisted General Strategy to Convert Aptamer-Based Electrochemical Biosensors from "Signal-Off―to "Signal-On― Analytical Chemistry, 2020, 92, 6229-6234.	3.2	25
58	Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 39, 1364-1388.	2.6	24
59	Glucose oxidase decorated fluorescent metal–organic frameworks as biomimetic cascade nanozymes for glucose detection through the inner filter effect. Analyst, The, 2021, 146, 4188-4194.	1.7	24
60	Highly dispersible and charge-tunable magnetic Fe ₃ O ₄ nanoparticles: facile fabrication and reversible binding to GO for efficient removal of dye pollutants. Journal of Materials Chemistry A, 2014, 2, 15763-15767.	5.2	23
61	Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348.	2.7	23
62	Novel plastic biochips for colorimetric detection of biomolecules. Analytical and Bioanalytical Chemistry, 2012, 404, 1935-1944.	1.9	22
63	Aptamer-Based K ⁺ Sensor: Process of Aptamer Transforming into G-Quadruplex. Journal of Physical Chemistry B, 2016, 120, 6606-6611.	1.2	22
64	Indirect Competitive Assays on DVD for Direct Multiplex Detection of Drugs of Abuse in Oral Fluids. Analytical Chemistry, 2015, 87, 1896-1902.	3.2	21
65	Detection and Quantitation of Heavy Metal lons on Bona Fide DVDs Using DNA Molecular Beacon Probes. Analytical Chemistry, 2015, 87, 5062-5067.	3.2	21
66	Binary DNA hairpin-based colorimetric biochip for simultaneous detection of Pb ²⁺ and Hg ²⁺ in real-world samples. Analyst, The, 2015, 140, 2608-2612.	1.7	20
67	Investigation of Na ⁺ and K ⁺ Competitively Binding with a G-Quadruplex and Discovery of a Stable K ⁺ –Na ⁺ -Quadruplex. Journal of Physical Chemistry B, 2019, 123, 5405-5411.	1.2	20
68	Metal–organic framework assisted and in situ synthesis of hollow CdS nanostructures with highly efficient photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 5649-5655.	1.6	20
69	Rational design and performance testing of aptamer-based electrochemical biosensors for adenosine. Journal of Electroanalytical Chemistry, 2009, 635, 75-82.	1.9	18
70	Buffer species-dependent catalytic activity of Cu-Adenine as a laccase mimic for constructing sensor array to identify multiple phenols. Analytica Chimica Acta, 2022, 1204, 339725.	2.6	18
71	Controlled calcination of ZnSe and ZnTe nanospheres to prepare visible-light catalysts with enhanced photostability and photoactivity. Journal of Materials Science, 2016, 51, 11021-11037.	1.7	16
72	Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins. Analyst, The, 2019, 144, 3826-3835.	1.7	16

#	Article	IF	CITATIONS
73	Thin-layer electrochemistry of 1,3,5-triferrocenylbenzene: A unique two-step, three-electron redox process. Electrochemistry Communications, 2006, 8, 951-955.	2.3	15
74	Highly Water-soluble and Surface Charge-tunable Fluorescent Fullerene Nanoparticles: Facile Fabrication and Cellular Imaging. Electrochimica Acta, 2016, 201, 220-227.	2.6	15
7 5	Thin-film voltammetry and its analytical applications: A review. Analytica Chimica Acta, 2015, 855, 1-12.	2.6	14
76	Revealing and Resolving the Restrained Enzymatic Cleavage of DNA Self-Assembled Monolayers on Gold: Electrochemical Quantitation and ESI-MS Confirmation. Analytical Chemistry, 2017, 89, 2464-2471.	3.2	14
77	Plasmonic Hot Hole Extraction from CuS Nanodisks Enables Significant Acceleration of Oxygen Evolution Reactions. Journal of Physical Chemistry Letters, 2021, 12, 7988-7996.	2.1	14
78	Insights into the Competition between K ⁺ and Pb ²⁺ Binding to a G-Quadruplex and Discovery of a Novel K ⁺ â€"Pb ²⁺ â€"Quadruplex Intermediate. Journal of Physical Chemistry B, 2018, 122, 9382-9388.	1.2	13
79	Precursor reactivity differentiation for single-step preparation of Ag2Se@Ag2S core–shell nanocrystals with distinct absorption and emission properties enabling sensitive near-infrared photodetection. Journal of Materials Science, 2018, 53, 11355-11366.	1.7	13
80	Liquid Level Measurement Model Outside of Closed Containers Based on Continuous Sound Wave Amplitude. Sensors, 2018, 18, 2516.	2.1	12
81	Diameter- and Length-controlled Synthesis of Ultrathin ZnS Nanowires and Their Size-Dependent UV Absorption Properties, Photocatalytical Activities and Band-Edge Energy Levels. Nanomaterials, 2019, 9, 220.	1.9	12
82	One-pot and high-yield preparation of ultrathin \hat{l}^2 -PbO nanowires and nanosheets for high-capacity positive electrodes in lead-acid batteries. Journal of Alloys and Compounds, 2020, 831, 154845.	2.8	12
83	Inkjet Printed Electrode Arrays for Potential Modulation of DNA Self-Assembled Monolayers on Gold. Analytical Chemistry, 2008, 80, 8814-8821.	3.2	11
84	Electrochemical detection of benzo(a)pyrene in acetonitrile–water binary medium. Talanta, 2015, 138, 46-51.	2.9	11
85	Gramâ€Scale Synthesis of Highly Efficient Rareâ€Earthâ€Elementâ€Free Red/Green/Blue Solidâ€State Bandgap Fluorescent Carbon Quantum Rings for White Lightâ€Emitting Diodes. Angewandte Chemie, 2021, 133, 16479-16484.	1.6	11
86	A gold nanoparticle-based colorimetric probe for rapid detection of 1-hydroxypyrene in urine. Analyst, The, 2015, 140, 4662-4667.	1.7	10
87	Ag@SiO2 nanoparticles performing as a nanoprobe for selective analysis of 2-aminoanthracene in wastewater samples via metal-enhanced fluorescence. Talanta, 2019, 200, 242-248.	2.9	10
88	Thioflavin T specifically brightening "Guanine Island―in duplex-DNA: a novel fluorescent probe for single-nucleotide mutation. Analyst, The, 2019, 144, 2284-2290.	1.7	10
89	Synergistic tuning of oxygen vacancies and d-band centers of ultrathin cobaltous dihydroxycarbonate nanowires for enhanced electrocatalytic oxygen evolution. Nanoscale, 2020, 12, 11735-11745.	2.8	10
90	Colloidal Cd _{<i>x</i>} M _{1–<i>x</i>} Te Nanowires from the Visible to the Near Infrared Region: <i>N</i>	2.1	9

#	Article	IF	CITATIONS
91	Lightâ€Emitting Diodes: Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Lightâ€Emitting Diodes (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	11.1	5
92	A colorimetric immuno-microarray for the quantitation and direct visualization of illicit drugs in body fluids. Analyst, The, 2021, 146, 538-546.	1.7	3
93	Synthesis of Sb ₂ E ₃ (E = S, Se) Nanorods with a Flat Cross Section by a Rapid Hot Injection Method. Journal of Nanoscience and Nanotechnology, 2010, 10, 7778-7782.	0.9	2
94	Optical disc technology-enabled analytical devices: from hardware modification to digitized molecular detection. Analyst, The, 2016, 141, 6190-6201.	1.7	2
95	Quantitative comparison of three representative staining methods for the development of multichannel colorimetric biochips. Analytical Methods, 2018, 10, 1715-1724.	1.3	2
96	A versatile fluorometric <i>in situ</i> hybridization method for the quantitation of hairpin conformations in DNA self-assembled monolayers. Analyst, The, 2020, 145, 4522-4531.	1.7	1
97	å应釜的原ç†ã€æ"ä½œã€æ³¨æ"事项åŠåº"用. Chinese Science Bulletin, 2022, , .	0.4	1
98	超细åŠå¯¼ä½"纳米线/æ£'çš"啿ާ啿ˆë¸Žæ−°å¥‡æ€§èˆç"ç©¶åŠåŠŸèƒ½åº"ç"". Chinese Science Bulletin	, 2022, , .	1
99	ONE-POT SYNTHESIS OF Sb2Se3 NANOWIRES USING SELENIUM DIOXIDE AS THE SELENIUM PRECURSOR IN AIR AND THEIR CHARACTERIZATION. International Journal of Nanoscience, 2013, 12, 1350040.	0.4	O

 $100 \qquad \mathring{a} \ddot{Y}^o \ddot{a}^o \dot{Z} \& \mathring{a} \mathring{a} \mathring{a} \mathring{a} \mathring{a} ... \% \\ \varsigma \rangle \tilde{a} \mathring{a} ... \% \\ \acute{e} @ \pm \varsigma \mathring{a} \& -\mathring{a} & -\mathring{$