Ghasem Ghalamfarsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054943/publications.pdf

Version: 2024-02-01

172457 206112 2,500 57 29 48 citations g-index h-index papers 58 58 58 3956 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Cytotoxic Effect of Podophyllotoxin-Loaded Magnetic Nanoparticles on Proliferation of Colorectal (HT-29) and Breast (MCF-7) Cancer Cell Lines. Current Nanomaterials, 2022, 07, .	0.4	O
2	The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses. Immunology and Cell Biology, 2021, 99, 814-832.	2.3	18
3	Chemical composition and cytotoxic activity of the essential oil from the aerial parts of Dorema aucheri. Journal of HerbMed Pharmacology, 2021, 10, 344-350.	0.9	1
4	Patients with Covid 19 have significantly reduced CH50 activity. Virus Disease, 2021, 32, 681-689.	2.0	6
5	Bispecific antibodies in colorectal cancer therapy: recent insights and emerging concepts. Immunotherapy, 2021, 13, 1355-1367.	2.0	2
6	Blockage of immune checkpoint molecules increases Tâ€cell priming potential of dendritic cell vaccine. Immunology, 2020, 159, 75-87.	4.4	67
7	Regulatory T cells in breast cancer as a potent anti-cancer therapeutic target. International Immunopharmacology, 2020, 78, 106087.	3.8	33
8	Silencing of IL-6 and STAT3 by siRNA loaded hyaluronate-N,N,N-trimethyl chitosan nanoparticles potently reduces cancer cell progression. International Journal of Biological Macromolecules, 2020, 149, 487-500.	7.5	56
9	Adenosine and adenosine receptors in colorectal cancer. International Immunopharmacology, 2020, 87, 106853.	3.8	24
10	Inhibition of CD73 using folate targeted nanoparticles carrying anti-CD73 siRNA potentiates anticancer efficacy of Dinaciclib. Life Sciences, 2020, 259, 118150.	4.3	22
11	Coinhibition of S1PR1 and GP130 by siRNAâ€loaded alginateâ€conjugated trimethyl chitosan nanoparticles robustly blocks development of cancer cells. Journal of Cellular Physiology, 2020, 235, 9702-9717.	4.1	19
12	Concomitant blockade of A2AR and CTLAâ€4 by siRNAâ€loaded polyethylene glycolâ€chitosanâ€alginate nanoparticles synergistically enhances antitumor Tâ€cell responses. Journal of Cellular Physiology, 2020, 235, 10068-10080.	4.1	30
13	Silencing adenosine A2a receptor enhances dendritic cell-based cancer immunotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102240.	3.3	23
14	Silencing of HIF- $1\hat{1}\pm/CD73$ axis by siRNA-loaded TAT-chitosan-spion nanoparticles robustly blocks cancer cell progression. European Journal of Pharmacology, 2020, 882, 173235.	3.5	48
15	Blockade of CTLA-4 increases anti-tumor response inducing potential of dendritic cell vaccine. Journal of Controlled Release, 2020, 326, 63-74.	9.9	56
16	Silencing of p68 and STAT3 synergistically diminishes cancer progression. Life Sciences, 2020, 249, 117499.	4.3	31
17	PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sciences, 2020, 247, 117437.	4.3	33
18	Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathology Research and Practice, 2020, 216, 152915.	2.3	39

#	Article	IF	CITATIONS
19	Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression. International Journal of Pharmaceutics, 2020, 581, 119236.	5.2	50
20	Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. International Immunopharmacology, 2020, 83, 106446.	3.8	30
21	Tumor associated macrophages in the molecular pathogenesis of ovarian cancer. International Immunopharmacology, 2020, 84, 106471.	3.8	18
22	Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sciences, 2019, 237, 116952.	4.3	69
23	S1PR1 as a Novel Promising Therapeutic Target in Cancer Therapy. Molecular Diagnosis and Therapy, 2019, 23, 467-487.	3.8	37
24	Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer. Prostaglandins and Other Lipid Mediators, 2019, 144, 106338.	1.9	79
25	An immunoproteomic approach to identifying immunoreactive proteins in <i>Leishmania infantum</i> amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathogens and Global Health, 2019, 113, 124-132.	2.3	10
26	Downregulation of A2AR by siRNA loaded PEG-chitosan-lactate nanoparticles restores the T cell mediated anti-tumor responses through blockage of PKA/CREB signaling pathway. International Journal of Biological Macromolecules, 2019, 133, 436-445.	7.5	58
27	CD73 as a potential opportunity for cancer immunotherapy. Expert Opinion on Therapeutic Targets, 2019, 23, 127-142.	3.4	102
28	The role of DEADâ€box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. Journal of Cellular Physiology, 2019, 234, 5478-5487.	4.1	41
29	Dimethyl fumarate: Regulatory effects on the immune system in the treatment of multiple sclerosis. Journal of Cellular Physiology, 2019, 234, 9943-9955.	4.1	29
30	Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer. Journal of Cellular Biochemistry, 2019, 120, 9300-9314.	2.6	23
31	Association of single nucleotide autophagyâ€related protein 5 gene polymorphism rs2245214 with susceptibility to non–small cell lung cancer. Journal of Cellular Biochemistry, 2019, 120, 1924-1931.	2.6	13
32	A review on medicinal plant extracts and their active ingredients against methicillin-resistant and methicillin-sensitive Staphylococcus aureus. Journal of HerbMed Pharmacology, 2019, 8, 173-184.	0.9	12
33	Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. Journal of Cellular Physiology, 2018, 233, 2032-2057.	4.1	116
34	The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomedicine and Pharmacotherapy, 2018, 108, 1415-1424.	5.6	201
35	Polymorphism of Foxp3 gene affects the frequency of regulatory T cells and disease activity in patients with rheumatoid arthritis in Iranian population. Immunology Letters, 2018, 204, 16-22.	2.5	22
36	Antiâ€angiogenic effects of CD73â€specific siRNAâ€loaded nanoparticles in breast cancerâ€bearing mice. Journal of Cellular Physiology, 2018, 233, 7165-7177.	4.1	56

#	Article	IF	CITATIONS
37	IL-27: Friend or Foe in the Autoimmune Diseases. Current Immunology Reviews, 2018, 13, .	1.2	1
38	Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 2017, 190, 64-83.	2.5	374
39	Safflower Seed Oil, Containing Oleic Acid and Palmitic Acid, Enhances the Stemness of Cultured Embryonic Neural Stem Cells through Notch1 and Induces Neuronal Differentiation. Frontiers in Neuroscience, 2017, 11, 446.	2.8	14
40	Differential Immune Reactivity Pattern of SW48 and SW1116 Colorectal Cancer Cell Lines with Colorectal Cancer Patients Sera. Advanced Biomedical Research, 2017, 6, 6.	0.5	3
41	A review study on phytochemistry and pharmacology applications of Juglans Regia plant. Pharmacognosy Reviews, 2017, 11, 145.	1.2	71
42	Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis. Journal of Immunotoxicology, 2016, 13, 603-619.	1.7	38
43	IL-21 and IL-21 receptor in the immunopathogenesis of multiple sclerosis. Journal of Immunotoxicology, 2016, 13, 274-285.	1.7	31
44	Synergistic induction of apoptosis in B-cell chronic lymphocytic leukemia cells after treatment with all-trans retinoic acid in combination with interleukin-21 and rituximab. Journal of Cancer Research and Therapeutics, 2016, 12, 1278.	0.9	4
45	The immunomodulatory effects of fish-oil supplementation in elite paddlers: A pilot randomized double blind placebo-controlled trial. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 99, 35-40.	2.2	9
46	All-Trans-Retinoic Acid Differentially Regulates Proliferation of Normal and Leukemic B Cells From Different Subsets of Chronic Lymphocytic Leukemia. Nutrition and Cancer, 2015, 67, 285-291.	2.0	7
47	Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumor Biology, 2015, 36, 5727-5742.	1.8	96
48	The skewed balance between Tregs and Th17 in chronic lymphocytic leukemia. Future Oncology, 2015, 11, 1567-1582.	2.4	25
49	Myeloid-derived suppressor cells in B cell malignancies. Tumor Biology, 2015, 36, 7339-7353.	1.8	53
50	The Effects of NDRG2 Overexpression on Cell Proliferation and Invasiveness of SW48 Colorectal Cancer Cell Line. Iranian Journal of Medical Sciences, 2015, 40, 430-9.	0.4	9
51	N-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro. Iranian Journal of Basic Medical Sciences, 2015, 18, 773-9.	1.0	11
52	The Significance of Matrix Metalloproteinases in the Immunopathogenesis and Treatment of Multiple Sclerosis = Ø£ù‡ùùŠØ© اù"Ø£ù†Ø²ùŠùات اù"ùعØ⁻ù†ùŠØ© اù"ùØù"ù"Ø© ù"ù"ذرù	ı^øªù\$ù†	ùù\$ ⁵ øªø·ù^ø
53	Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors: New Hope for Success in Multiple Sclerosis Therapy. Innovations in Clinical Neuroscience, 2014, 11, 23-36.	0.1	13
54	Regulatory T cells in chronic lymphocytic leukemia: implication for immunotherapeutic interventions. Tumor Biology, 2013, 34, 2031-2039.	1.8	48

#	Article	IF	CITATIONS
55	The role of natural killer T cells in B cell malignancies. Tumor Biology, 2013, 34, 1349-1360.	1.8	40
56	Differential regulation of B-cell proliferation by IL21 in different subsets of chronic lymphocytic leukemia. Cytokine, 2013, 62, 439-445.	3.2	20
57	Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia. Tumor Biology, 2013, 34, 929-940.	1.8	60