
Tomoki Nakayama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of <i>l±</i> â€pinene. Journal of Geophysical Research, 2010, 115, .	3.3	130
2	Wavelength and NO _x dependent complex refractive index of SOAs generated from the photooxidation of toluene. Atmospheric Chemistry and Physics, 2013, 13, 531-545.	1.9	129
3	Stabilization of the Mass Absorption Cross Section of Black Carbon for Filter-Based Absorption Photometry by the use of a Heated Inlet. Aerosol Science and Technology, 2009, 43, 741-756.	1.5	113
4	Characterization of a Three Wavelength Photoacoustic Soot Spectrometer (PASS-3) and a Photoacoustic Extinctiometer (PAX). Journal of the Meteorological Society of Japan, 2015, 93, 285-308.	0.7	68
5	Size-dependent correction factors for absorption measurements using filter-based photometers: PSAP and COSMOS. Journal of Aerosol Science, 2010, 41, 333-343.	1.8	57
6	Properties of lightâ€absorbing aerosols in the Nagoya urban area, Japan, in August 2011 and January 2012: Contributions of brown carbon and lensing effect. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,721.	1.2	57
7	Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan. Atmospheric Chemistry and Physics, 2016, 16, 2525-2541.	1.9	54
8	Development and evaluation of a palm-sized optical PM _{2.5} sensor. Aerosol Science and Technology, 2018, 52, 2-12.	1.5	49
9	Atmospheric chemistry of CxF2x+1CHCH2 (x=1, 2, 4, 6, and 8): Kinetics of gas-phase reactions with Cl atoms, OH radicals, and O3. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 124-128.	2.0	45
10	Characterizing PM2.5 in Hanoi with New High Temporal Resolution Sensor. Aerosol and Air Quality Research, 2018, 18, 2487-2497.	0.9	41
11	Observation of carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR laser absorption spectroscopy. Atmospheric Environment, 2011, 45, 1168-1174.	1.9	36
12	Atmospheric Chemistry of CF3CHCH2 and C4F9CHCH2:  Products of the Gas-Phase Reactions with Cl Atoms and OH Radicals. Journal of Physical Chemistry A, 2007, 111, 909-915.	1.1	35
13	Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser. Applied Physics B: Lasers and Optics, 2007, 88, 131-135.	1.1	33
14	Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan. Atmospheric Measurement Techniques, 2015, 8, 2775-2788.	1.2	33
15	Wavelength Dependence of Refractive Index of Secondary Organic Aerosols Generated during the Ozonolysis and Photooxidation of α-Pinene. Scientific Online Letters on the Atmosphere, 2012, 8, 119-123.	0.6	32
16	Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques. Atmospheric Environment, 2010, 44, 3034-3042.	1.9	31
17	Radiative transfer modeling of filter-based measurements of light absorption by particles: Importance of particle size dependent penetration depth. Journal of Aerosol Science, 2010, 41, 401-412.	1.8	29
18	Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan. Atmospheric Environment, 2008, 42, 1995-2006.	1.9	28

Τομοκί Νακαγαμα

#	Article	IF	CITATIONS
19	Characteristics of atmospheric aerosols containing heavy metals measured on Fukue Island, Japan. Atmospheric Environment, 2014, 97, 447-455.	1.9	28
20	East Asian Monsoon controls on the inter-annual variability in precipitation isotope ratio in Japan. Climate of the Past, 2015, 11, 339-353.	1.3	28
21	Complex refractive index of secondary organic aerosol generated from isoprene/NO _x photooxidation in the presence and absence of SO ₂ . Journal of Geophysical Research D: Atmospheres, 2015, 120, 7777-7787.	1.2	27
22	Hygroscopicity and CCN activity of atmospheric aerosol particles and their relation to organics: Characteristics of urban aerosols in Nagoya, Japan. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4100-4121.	1.2	27
23	Measurement of the light absorbing properties of diesel exhaust particles using a three-wavelength photoacoustic spectrometer. Atmospheric Environment, 2014, 94, 428-437.	1.9	25
24	Characterization and possible sources of nitrated mono- and di-aromatic hydrocarbons containing hydroxyl and/or carboxyl functional groups in ambient particles in Nagoya, Japan. Atmospheric Environment, 2019, 211, 91-102.	1.9	24
25	Observation of new particle formation over a mid-latitude forest facing the North Pacific. Atmospheric Environment, 2013, 64, 77-84.	1.9	23
26	The effects of meteorological conditions and long-range transport on PM2.5 levels in Hanoi revealed from multi-site measurement using compact sensors and machine learning approach. Journal of Aerosol Science, 2021, 152, 105716.	1.8	22
27	Comparison of laser-induced fluorescence and chemiluminescence measurements of NO2 at an urban site. Atmospheric Environment, 2011, 45, 6233-6240.	1.9	21
28	Total OH reactivity measurement in a BVOC dominated temperate forest during a summer campaign, 2014. Atmospheric Environment, 2016, 131, 41-54.	1.9	21
29	Hygroscopicity of Organic Aerosols and Their Contributions to CCN Concentrations Over a Midlatitude Forest in Japan. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9703-9723.	1.2	21
30	Effective interaction energy of water dimer at room temperature: An experimental and theoretical study. Journal of Chemical Physics, 2007, 127, 134302.	1.2	19
31	Design and characterization of a novel single-particle polar nephelometer. Aerosol Science and Technology, 2016, 50, 392-404.	1.5	19
32	Effect of Oxidation Process on Complex Refractive Index of Secondary Organic Aerosol Generated from Isoprene. Environmental Science & Technology, 2018, 52, 2566-2574.	4.6	19
33	Approach to Thermal Equilibrium in Atomic Collisions. Physical Review Letters, 2008, 100, 103001.	2.9	18
34	Relative and Absolute Sensitivity Analysis on Ozone Production in Tsukuba, a City in Japan. Environmental Science & Technology, 2019, 53, 13629-13635.	4.6	17
35	Atmospheric Chemistry of CH3CHF2(HFC-152a):Â Kinetics, Mechanisms, and Products of Cl Atom- and OH Radical-Initiated Oxidation in the Presence and Absence of NOx. Journal of Physical Chemistry A, 2005, 109, 9061-9069.	1.1	16
36	A Gas-Phase Kinetic Study of the Reaction between Bromine Monoxide and Methylperoxy Radicals at Atmospheric Temperatures. Journal of Physical Chemistry A, 2007, 111, 3342-3348.	1.1	16

Τομοκί Νακαγάμα

#	Article	IF	CITATIONS
37	Buffer-gas pressure broadening for the (0003)â† (0000) band of N2O measured with continuous-wave cavity ring-down spectroscopy. Chemical Physics, 2007, 334, 196-203.	0.9	16
38	Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 259-273.	1.2	16
39	Kinetics and impacting factors of HO ₂ uptake onto submicron atmospheric aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan. Atmospheric Chemistry and Physics, 2021, 21, 12243-12260.	1.9	16
40	Can Delhi's Pollution be Affected by Crop Fires in the Punjab Region?. Scientific Online Letters on the Atmosphere, 2020, 16, 86-91.	0.6	16
41	Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7215-7234.	1.2	14
42	Investigation of dark condition nitrate radical- and ozone-initiated aging of toluene secondary organic aerosol: Importance of nitrate radical reactions with phenolic products. Atmospheric Environment, 2019, 219, 117049.	1.9	14
43	Hygroscopicity and cloud condensation nucleus activity of forest aerosol particles during summer in Wakayama, Japan. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3042-3064.	1.2	13
44	Atmospheric lifetime of SF5CF3. Geophysical Research Letters, 2002, 29, 7-1-7-4.	1.5	12
45	Hydrogen Atom Formation in the Photolysis of Acetone at 193 nmâ€. Journal of Physical Chemistry A, 2004, 108, 8002-8008.	1.1	12
46	Characterization of Aerosol Particles in the Tokyo Metropolitan Area using Two Different Particle Mass Spectrometers. Aerosol Science and Technology, 2011, 45, 315-326.	1.5	11
47	Diurnal variation and size dependence of the hygroscopicity of organic aerosol at a forest site in Wakayama, Japan: their relationship to CCN concentrations. Atmospheric Chemistry and Physics, 2019, 19, 5889-5903.	1.9	11
48	N(4S) Formation following the 193.3-nm ArF Laser Irradiation of NO and NO2and Its Application to Kinetic Studies of N(4S) Reactions with NO and NO2. Journal of Physical Chemistry A, 2005, 109, 10897-10902.	1.1	10
49	Measurements of the 3ν 3 band of 14N15N16O and 15N14N16O using continuous-wave cavity ring-down spectroscopy. Applied Physics B: Lasers and Optics, 2007, 88, 137-140.	1.1	10
50	Thermal decomposition rate of N ₂ O ₅ measured by cavity ringâ€down spectroscopy. International Journal of Chemical Kinetics, 2008, 40, 679-684.	1.0	10
51	Vacuum Ultraviolet Laser-Induced Fluorescence Detection of O(1S) Atom Produced in the 193 nm Photolysis of Ozone. Journal of Physical Chemistry A, 2003, 107, 9368-9373.	1.1	9
52	Total hydroxyl radical reactivity measurements in a suburban area during AQUAS–Tsukuba campaign in summer 2017. Science of the Total Environment, 2020, 740, 139897.	3.9	9
53	Quantum yield for N(4S) production in the ultraviolet photolysis of N2O. Journal of Geophysical Research, 2003, 108, .	3.3	8
54	Nitrate Radical Quantum Yield from Peroxyacetyl Nitrate Photolysis. Journal of Physical Chemistry A, 2005, 109, 2552-2558.	1.1	8

#	Article	IF	CITATIONS
55	Atmospheric Chemistry of BrO Radicals: Kinetics of the Reaction with C ₂ H ₅ O ₂ Radicals at 233â^'333 K. Journal of Physical Chemistry A, 2009, 113, 10231-10237.	1.1	8
56	lsotopic Variations Associated with North-South Displacement of the Baiu Front. Scientific Online Letters on the Atmosphere, 2013, 9, 187-190.	0.6	8
57	Thermalization cross sections of suprathermal N(4S) atoms in collisions with atmospheric molecules. Geophysical Research Letters, 2005, 32, .	1.5	7
58	Vacuum ultraviolet laser-induced fluorescence kinetic study of the reactions of Cl atoms with fluoroalkenes (CxF2x+1CHCH2,x = 1,2,4, 6, and 8) at low pressures. International Journal of Chemical Kinetics, 2007, 39, 328-332.	1.0	7
59	Kinetics and Mechanism of the Reaction of Chlorine Atoms with n-Pentanal. Journal of Physical Chemistry A, 2008, 112, 1741-1746.	1.1	7
60	Genesis of a Severe Dust Storm Over the Indian Subcontinent: Dynamics and Impacts. Earth and Space Science, 2022, 9, e2021EA001702.	1.1	7
61	Zhang <i>etÂal.</i> Reply:. Physical Review Letters, 2009, 103, .	2.9	6
62	Fluorescence detection of atmospheric nitrogen dioxide using a blue light-emitting diode as an excitation source. Applied Optics, 2010, 49, 3762.	2.1	6
63	Development of a balloon-borne instrument for CO ₂ vertical profile observations in the troposphere. Atmospheric Measurement Techniques, 2019, 12, 5639-5653.	1.2	6
64	Optical Properties and Chemical Compositions of Iodine-Containing Aerosols Produced from the Atmospheric Photolysis of Methylene Iodide in the Presence of Ozone. Bulletin of the Chemical Society of Japan, 2009, 82, 910-913.	2.0	5
65	Quantum yield for hydrogen atom formation from H2O2 photolysis in the range 193-240 nm. International Journal of Chemical Kinetics, 2005, 37, 751-754.	1.0	4
66	Laboratory Study of O(1S) Formation Process in the Photolysis of O3 and its Atmospheric Implications. Journal of Atmospheric Chemistry, 2006, 53, 107-122.	1.4	4
67	PLP–LIF study of the reactions of chlorine atoms with C2H2, C2H4, and C3H6 in 2–100 Torr of N2 diluent at 295 K. Chemical Physics Letters, 2010, 494, 174-178.	1.2	4
68	Variabilities in PM2.5 and Black Carbon Surface Concentrations Reproduced by Aerosol Optical Properties Estimated by In-Situ Data, Ground Based Remote Sensing and Modeling. Remote Sensing, 2021, 13, 3163.	1.8	4
69	Ground-based measurement of column-averaged mixing ratios of methane and carbon dioxide in the Sichuan Basin of China by a desktop optical spectrum analyzer. Journal of Applied Remote Sensing, 2017, 12, 1.	0.6	4
70	Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions. Isotopes in Environmental and Health Studies, 2017, 53, 646-659.	0.5	3
71	Reaction kinetics of O(1S) atom with atmospheric molecules. Chemical Physics Letters, 2004, 398, 163-167.	1.2	2
72	Buffer-gas Pressure Broadening for the Third Overtone Band of NO Measured with Continuous-wave Cavity Ring-down Spectroscopy. Chemistry Letters, 2009, 38, 1000-1001.	0.7	2

Τομοκί Νακαγάμα

#	Article	IF	CITATIONS
73	<i>In situ</i> measurement of CO ₂ and water vapour isotopic compositions at a forest site using mid-infrared laser absorption spectroscopy. Isotopes in Environmental and Health Studies, 2016, 52, 603-618.	0.5	2
74	Missing ozone-induced potential aerosol formation in a suburban deciduous forest. Atmospheric Environment, 2017, 171, 91-97.	1.9	2
75	Assessment of the Sphericity of Submicrometer Particles Using a Single-particle Polar Nephelometer at an Urban Site in Japan. Aerosol and Air Quality Research, 2020, 20, 2474-2484.	0.9	2
76	Offline analysis of the chemical composition and hygroscopicity of submicrometer aerosol at an Asian outflow receptor site and comparison with online measurements. Atmospheric Chemistry and Physics, 2022, 22, 5515-5533.	1.9	2
77	Observation of column-averaged molar mixing ratios of carbon dioxide in Tokyo. Atmospheric Environment: X, 2019, 2, 100022.	0.8	1
78	Nitrate radical, ozone and hydroxyl radical initiated aging of limonene secondary organic aerosol. Atmospheric Environment: X, 2021, 9, 100102.	0.8	0