
## MiklÃ<sup>3</sup>s S Z Kellermayer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054479/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nanosurgical Manipulation of Titin and Its M-Complex. Nanomaterials, 2022, 12, 178.                                                                                                                                       | 1.9 | 4         |
| 2  | Contribution of hydrophobic interactions to protein mechanical stability. Computational and Structural Biotechnology Journal, 2022, 20, 1946-1956.                                                                        | 1.9 | 13        |
| 3  | MO044: Cellular mechanism of the exceptional dominant transmission in NPHS2-associated glomerulopathy. Nephrology Dialysis Transplantation, 2022, 37, .                                                                   | 0.4 | Ο         |
| 4  | Topography, Spike Dynamics, and Nanomechanics of Individual Native SARS-CoV-2 Virions. Nano Letters, 2021, 21, 2675-2680.                                                                                                 | 4.5 | 41        |
| 5  | Large Stokes-shift bioorthogonal probes for STED, 2P-STED and multi-color STED nanoscopy. Methods and Applications in Fluorescence, 2021, 9, 015006.                                                                      | 1.1 | 6         |
| 6  | A brief overview of global biotechnology. Biotechnology and Biotechnological Equipment, 2021, 35,<br>S5-S14.                                                                                                              | 0.5 | 14        |
| 7  | Citrullinated Fibrinogen Renders Clots Mechanically Less Stable, but Lysis-Resistant. Circulation Research, 2021, 129, 342-344.                                                                                           | 2.0 | 8         |
| 8  | The 3M Concept: Biomedical Translational Imaging from Molecules to Mouse to Man. The EuroBiotech<br>Journal, 2021, 5, 155-160.                                                                                            | 0.5 | 0         |
| 9  | BRAF Modulates Stretch-Induced Intercellular Gap Formation through Localized Actin<br>Reorganization. International Journal of Molecular Sciences, 2021, 22, 8989.                                                        | 1.8 | 1         |
| 10 | Development, structure and mechanics of a synthetic <i>E. coli</i> outer membrane model. Nanoscale<br>Advances, 2021, 3, 755-766.                                                                                         | 2.2 | 5         |
| 11 | Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete's Heart.<br>International Journal of Molecular Sciences, 2021, 22, 11110.                                                          | 1.8 | 2         |
| 12 | Semmelweis Caring University Model Program Based on the Development of a Center of Preventive<br>Services: Health for All Employees at a University Occupational Setting. Frontiers in Public Health,<br>2021, 9, 727668. | 1.3 | 1         |
| 13 | The discovery of actin: "to see what everyone else has seen, and to think what nobody has thoughtâ€*.<br>Journal of Muscle Research and Cell Motility, 2020, 41, 3-9.                                                     | 0.9 | 11        |
| 14 | Single-particle virology. Biophysical Reviews, 2020, 12, 1141-1154.                                                                                                                                                       | 1.5 | 16        |
| 15 | MO032PODOCIN REGULATES THE SIZE OF THE GLOMERULAR PORE. Nephrology Dialysis Transplantation, 2020, 35, .                                                                                                                  | 0.4 | 0         |
| 16 | Single-Molecule Mechanics in Ligand Concentration Gradient. Micromachines, 2020, 11, 212.                                                                                                                                 | 1.4 | 2         |
| 17 | Imaging and Mechanics of Infectious DNA Ejection by the T7 Bacteriophage. Biophysical Journal, 2020,<br>118, 490a.                                                                                                        | 0.2 | 0         |
| 18 | Green-Light Activatable, Water-Soluble Red-Shifted Coumarin Photocages. Organic Letters, 2019, 21,<br>9410-9414.                                                                                                          | 2.4 | 73        |

MiklÃ<sup>3</sup>s S Z Kellermayer

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Alterations in the properties of the cell membrane due to glycosphingolipid accumulation in a model of Gaucher disease. Scientific Reports, 2018, 8, 157.                                                                       | 1.6 | 45        |
| 20 | Forced phage uncorking: viral DNA ejection triggered by a mechanically sensitive switch. Nanoscale, 2018, 10, 1898-1904.                                                                                                        | 2.8 | 25        |
| 21 | Cardiac Computed Tomography Radiomics. Journal of Thoracic Imaging, 2018, 33, 26-34.                                                                                                                                            | 0.8 | 146       |
| 22 | Optimization of Quality Attributes and Atomic Force Microscopy Imaging of Reconstituted<br>Nanodroplets in Baicalin Loaded Self-Nanoemulsifying Formulations. Pharmaceutics, 2018, 10, 275.                                     | 2.0 | 23        |
| 23 | A myosin II nanomachine mimicking the striated muscle. Nature Communications, 2018, 9, 3532.                                                                                                                                    | 5.8 | 37        |
| 24 | Study on the dissolution improvement of albendazole using reconstitutable dry nanosuspension formulation. European Journal of Pharmaceutical Sciences, 2018, 123, 70-78.                                                        | 1.9 | 12        |
| 25 | Microstructural Distinction of Electrospun Nanofibrous Drug Delivery Systems Formulated with Different Excipients. Molecular Pharmaceutics, 2018, 15, 4214-4225.                                                                | 2.3 | 24        |
| 26 | Topology of interaction between titin and myosin thick filaments. Journal of Structural Biology, 2018, 203, 46-53.                                                                                                              | 1.3 | 5         |
| 27 | Temperature-Dependent Nanomechanics and Topography of Bacteriophage T7. Journal of Virology, 2018, 92, .                                                                                                                        | 1.5 | 13        |
| 28 | Label-free Multiscale Transport Imaging of the Living Cell. Biophysical Journal, 2018, 115, 874-880.                                                                                                                            | 0.2 | 8         |
| 29 | Plasmin-driven fibrinolysis in a quasi-two-dimensional nanoscale fibrin matrix. Journal of Structural<br>Biology, 2018, 203, 273-280.                                                                                           | 1.3 | 7         |
| 30 | Force generation by titin folding. Protein Science, 2017, 26, 1380-1390.                                                                                                                                                        | 3.1 | 28        |
| 31 | Preparation and 68Ga-radiolabeling of porous zirconia nanoparticle platform for PET/CT-imaging guided drug delivery. Journal of Pharmaceutical and Biomedical Analysis, 2017, 137, 146-150.                                     | 1.4 | 11        |
| 32 | Optical Trapping Nanometry of Hypermethylated CPG-Island DNA. Biophysical Journal, 2017, 112, 512-522.                                                                                                                          | 0.2 | 31        |
| 33 | Dispersion and stabilization of cochleate nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 270-275.                                                                                            | 2.0 | 15        |
| 34 | Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on<br>their growth and mechanics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids,<br>2017, 1862, 991-1000. | 1.2 | 15        |
| 35 | Stepwise reversible nanomechanical buckling in a viral capsid. Nanoscale, 2017, 9, 1136-1143.                                                                                                                                   | 2.8 | 11        |
| 36 | Force spectroscopy reveals the presence of structurally modified dimers in transthyretin amyloid annular oligomers. Journal of Molecular Recognition, 2017, 30, e2587.                                                          | 1.1 | 7         |

MiklÃ<sup>3</sup>S S Z Kellermayer

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Aggregation of PEGylated liposomes driven by hydrophobic forces. Colloids and Surfaces B:<br>Biointerfaces, 2016, 147, 467-474.                                                                                             | 2.5 | 14        |
| 38 | An AT-barrier mechanically controls DNA reannealing under tension. Nucleic Acids Research, 2016, 44, 7954-7962.                                                                                                             | 6.5 | 1         |
| 39 | Transport Imaging of Living Cells. Biophysical Journal, 2016, 110, 597a.                                                                                                                                                    | 0.2 | 0         |
| 40 | The growth determinants and transport properties of tunneling nanotube networks between B<br>lymphocytes. Cellular and Molecular Life Sciences, 2016, 73, 4531-4545.                                                        | 2.4 | 39        |
| 41 | Formation and Mechanical Properties of Calcium-Stabilized Membrane Rolls. Biophysical Journal, 2016,<br>110, 249a.                                                                                                          | 0.2 | 0         |
| 42 | Muscle intermediate filaments form a stress-transmitting and stress- signaling network in muscle.<br>Journal of Cell Science, 2015, 128, 219-24.                                                                            | 1.2 | 51        |
| 43 | Extreme Resilience in Cochleate Nanoparticles. Langmuir, 2015, 31, 839-845.                                                                                                                                                 | 1.6 | 11        |
| 44 | Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25–35 fibrils.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 327-332.                                         | 1.1 | 7         |
| 45 | Titin Domains Progressively Unfolded by Force Are Homogenously Distributed along the Molecule.<br>Biophysical Journal, 2015, 109, 340-345.                                                                                  | 0.2 | 20        |
| 46 | Molecular Tattoo: Subcellular Confinement of Drug Effects. Chemistry and Biology, 2015, 22, 548-558.                                                                                                                        | 6.2 | 11        |
| 47 | Effect of Methylation on the Nanomechanics of Double-Stranded DNA. Biophysical Journal, 2015, 108, 352a.                                                                                                                    | 0.2 | 0         |
| 48 | Low-force transitions in single titin molecules reflect a memory of contractile history. Journal of Cell Science, 2014, 127, 858-70.                                                                                        | 1.2 | 33        |
| 49 | Exclusion-Zone Dynamics Explored with Microfluidics and Optical Tweezers. Entropy, 2014, 16, 4322-4337.                                                                                                                     | 1.1 | 17        |
| 50 | Microfluidic channels laser-cut in thin double-sided tapes: Cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips. Sensors and Actuators B: Chemical, 2014, 196, 352-356. | 4.0 | 57        |
| 51 | Stretching desmin filaments with receding meniscus reveals large axial tensile strength. Journal of<br>Structural Biology, 2014, 186, 472-480.                                                                              | 1.3 | 4         |
| 52 | Nano-thrombelastography of fibrin during blood plasma clotting. Journal of Structural Biology, 2014, 186, 462-471.                                                                                                          | 1.3 | 11        |
| 53 | Photosynthetic reaction centre/carbon nanotube bundle composites. Physica Status Solidi (B): Basic<br>Research, 2014, 251, 2366-2371.                                                                                       | 0.7 | 4         |
| 54 | Individual Globular Domains and Domain Unfolding Visualized in Overstretched Titin Molecules with<br>Atomic Force Microscopy. PLoS ONE, 2014, 9, e85847.                                                                    | 1.1 | 8         |

MIKLÃ<sup>3</sup>S S Z KELLERMAYER

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Visualization of human Bloom's syndrome helicase molecules bound to homologous recombination intermediates. FASEB Journal, 2013, 27, 4954-4964.                                               | 0.2 | 15        |
| 56 | Epitaxial assembly dynamics of mutant amyloid β25–35_N27C fibrils explored with time-resolved scanning force microscopy. Biophysical Chemistry, 2013, 184, 54-61.                             | 1.5 | 4         |
| 57 | Lateral gradients significantly enhance static magnetic fieldâ€induced inhibition of pain responses in<br>mice—a double blind experimental study. Bioelectromagnetics, 2013, 34, 385-396.     | 0.9 | 15        |
| 58 | Different pressure–temperature behavior of the structured and unstructured regions of titin.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 112-118.                 | 1.1 | 23        |
| 59 | Cross-Species Mechanical Fingerprinting of Cardiac Myosin Binding Protein-C. Biophysical Journal, 2013, 104, 2465-2475.                                                                       | 0.2 | 8         |
| 60 | Conformational Dynamics of Titin PEVK Explored with FRET Spectroscopy. Biophysical Journal, 2012, 103, 1480-1489.                                                                             | 0.2 | 12        |
| 61 | Nanomechanics of Desmin Filaments Explored with Optical Tweezers. Biophysical Journal, 2012, 102, 578a.                                                                                       | 0.2 | 1         |
| 62 | Distinct Annular Oligomers Captured along the Assembly and Disassembly Pathways of Transthyretin<br>Amyloid Protofibrils. PLoS ONE, 2012, 7, e44992.                                          | 1.1 | 42        |
| 63 | A novel actin binding site of myosin required for effective muscle contraction. Nature Structural and Molecular Biology, 2012, 19, 299-306.                                                   | 3.6 | 64        |
| 64 | Single-Molecule Studies of Amyloidogenic Proteins. , 2012, , 169-210.                                                                                                                         |     | 1         |
| 65 | Millisecond Time-Scale Protein Dynamics Exists Prior to the Activation of the Bulk Solvent Matrix.<br>Journal of Physical Chemistry B, 2011, 115, 5707-5715.                                  | 1.2 | 5         |
| 66 | A Novel Actin Binding Site of Myosin is Responsible for Effective Muscle Contraction. Biophysical<br>Journal, 2011, 100, 130a-131a.                                                           | 0.2 | 1         |
| 67 | Mechanical Unfolding of Cardiac Myosin Binding Protein-C by Atomic Force Microscopy. Biophysical<br>Journal, 2011, 101, 1968-1977.                                                            | 0.2 | 40        |
| 68 | The Motif of Myosin Binding Protein-C is Mechanically Weak and Extensible. Biophysical Journal, 2011,<br>100, 453a-454a.                                                                      | 0.2 | 1         |
| 69 | Combined Atomic Force Microscopy and Fluorescence Microscopy. Methods in Molecular Biology, 2011, 736, 439-456.                                                                               | 0.4 | 6         |
| 70 | Structure and assembly–disassembly properties of wildâ€ŧype transthyretin amyloid protofibrils<br>observed with atomic force microscopy. Journal of Molecular Recognition, 2011, 24, 467-476. | 1.1 | 22        |
| 71 | Effect of the betaâ€sheetâ€breaker peptide LPFFD on oriented network of amyloid β25â€35 fibrils. Journal of<br>Molecular Recognition, 2011, 24, 453-460.                                      | 1.1 | 10        |
| 72 | Structure and elasticity of desmin protofibrils explored with scanning force microscopy. Journal of<br>Molecular Recognition, 2011, 24, 1095-1104.                                            | 1.1 | 11        |

MiklÃ<sup>3</sup>s S Z Kellermayer

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effects of Estrogen on Beta-Amyloid-Induced Cholinergic Cell Death in the Nucleus Basalis<br>Magnocellularis. Neuroendocrinology, 2011, 93, 90-105.                                                           | 1.2 | 20        |
| 74 | Recovery of functional enzyme from amyloid fibrils. FEBS Letters, 2010, 584, 1139-1142.                                                                                                                       | 1.3 | 4         |
| 75 | Dynamic Strength of Titin's Z-Disk End. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-8.                                                                                                            | 3.0 | 6         |
| 76 | Theoretical Predictions of the Effects of Force Transmission by Desmin on Intersarcomere Dynamics.<br>Biophysical Journal, 2010, 98, 258-266.                                                                 | 0.2 | 24        |
| 77 | Crystal-storing histiocytosis associated with only one of two consecutive, but genetically unrelated<br>B-cell lymphomas. Pathology Research and Practice, 2009, 205, 273-278.                                | 1.0 | 3         |
| 78 | Oriented epitaxial growth of amyloid fibrils of the N27C mutant β25–35 peptide. European Biophysics<br>Journal, 2008, 37, 1133-1137.                                                                          | 1.2 | 19        |
| 79 | Muscle Thixotropy: More than Just Cross-Bridges? Response to Comment by Campbell and Lakie.<br>Biophysical Journal, 2008, 94, 329-330.                                                                        | 0.2 | 5         |
| 80 | Periodically Arranged Interactions within the Myosin Filament Backbone Revealed by Mechanical<br>Unzipping. Journal of Molecular Biology, 2008, 377, 307-310.                                                 | 2.0 | 12        |
| 81 | Kinetic Characterization of the Function of Myosin Loop 4 in the Actinâ^'Myosin Interaction.<br>Biochemistry, 2008, 47, 283-291.                                                                              | 1.2 | 9         |
| 82 | Stepwise dynamics of epitaxially growing single amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 141-144.                                         | 3.3 | 102       |
| 83 | Interaction Forces between F-Actin and Titin PEVK Domain Measured with Optical Tweezers.<br>Biophysical Journal, 2007, 93, 2102-2109.                                                                         | 0.2 | 93        |
| 84 | Potassium-dependent oriented growth of amyloid β25–35 fibrils on mica. Nanotechnology, 2007, 18,<br>345102.                                                                                                   | 1.3 | 34        |
| 85 | Spatially and Temporally Synchronized Atomic Force and Total Internal Reflection Fluorescence<br>Microscopy for Imaging and Manipulating Cells and Biomolecules. Biophysical Journal, 2006, 91,<br>2665-2677. | 0.2 | 55        |
| 86 | Visualizing and manipulating individual protein molecules. Physiological Measurement, 2005, 26, R119-R153.                                                                                                    | 1.2 | 40        |
| 87 | Reversible Mechanical Unzipping of Amyloid β-Fibrils. Journal of Biological Chemistry, 2005, 280, 8464-8470.                                                                                                  | 1.6 | 80        |
| 88 | Differential actin binding along the PEVK domain of skeletal muscle titin. Journal of Cell Science, 2004, 117, 5781-5789.                                                                                     | 1.2 | 71        |
| 89 | Mechanics and structure of titin oligomers explored with atomic force microscopy. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2003, 1604, 105-114.                                                      | 0.5 | 65        |
| 90 | Stretching and visualizing titin molecules: combining structure, dynamics and mechanics. , 2003, ,<br>499-511.                                                                                                |     | 0         |

6

MiklÃ<sup>3</sup>S S Z Kellermayer

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Different Molecular Mechanics Displayed by Titin's Constitutively and Differentially Expressed Tandem<br>Ig Segments. Journal of Structural Biology, 2002, 137, 248-258.            | 1.3 | 83        |
| 92  | Molecular Mechanics of Cardiac Titin's PEVK and N2B Spring Elements. Journal of Biological Chemistry, 2002, 277, 11549-11558.                                                       | 1.6 | 141       |
| 93  | Stretching and visualizing titin molecules: combining structure, dynamics and mechanics. Journal of<br>Muscle Research and Cell Motility, 2002, 23, 499-511.                        | 0.9 | 24        |
| 94  | Mechanical Fatigue in Repetitively Stretched Single Molecules of Titin. Biophysical Journal, 2001, 80, 852-863.                                                                     | 0.2 | 87        |
| 95  | Direct Visualization of Surface-Adsorbed Single Fluorescently Labeled Titin Molecules. Single<br>Molecules, 2001, 2, 79-83.                                                         | 1.6 | 6         |
| 96  | Mechanical Properties of Titin Isoforms. Advances in Experimental Medicine and Biology, 2000, 481, 283-304.                                                                         | 0.8 | 41        |
| 97  | Mechanical Manipulation of Single Titin Molecules with Laser Tweezers. Advances in Experimental<br>Medicine and Biology, 2000, 481, 111-128.                                        | 0.8 | 22        |
| 98  | Complete Unfolding of the Titin Molecule under External Force. Journal of Structural Biology, 1998, 122, 197-205.                                                                   | 1.3 | 72        |
| 99  | Titin Extensibility In Situ: Entropic Elasticity of Permanently Folded and Permanently Unfolded<br>Molecular Segments. Journal of Cell Biology, 1998, 140, 853-859.                 | 2.3 | 238       |
| 100 | Delayed dissociation of in vitro moving actin filaments from heavy meromyosin induced by low concentrations of Triton X-100. Biophysical Chemistry, 1997, 67, 199-210.              | 1.5 | 10        |
| 101 | Calcium-dependent inhibition of in vitro thin-filament motility by native titin. FEBS Letters, 1996, 380, 281-286.                                                                  | 1.3 | 117       |
| 102 | Elastic Properties of Single Titin Molecules Made Visible through Fluorescent F-Actin Binding.<br>Biochemical and Biophysical Research Communications, 1996, 221, 491-497.          | 1.0 | 43        |
| 103 | Rescue of in vitro actin motility halted at high ionic strength by reduction of ATP to submicromolar<br>levels. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1277, 107-114. | 0.5 | 13        |
| 104 | Nuclear magnetic resonance relaxation parameters of muscle in malignant hyperthermia-susceptible swine. Academic Radiology, 1996, 3, 26-30.                                         | 1.3 | 3         |
| 105 | MAINTENANCE OF IONS, PROTEINS AND WATER IN LENS FIBER CELLS BEFORE AND AFTER TREATMENT WITH NON-IONIC DETERGENTS. Cell Biology International, 1996, 20, 127-137.                    | 1.4 | 15        |
| 106 | Persisting in vitro motility of actin filaments at nanomolar ATP concentrations after ATP pretreatment. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 89-95.           | 0.5 | 3         |