
Bradley P Marks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interlaboratory Evaluation of Enterococcus faecium NRRL B-2354 as a Salmonella Surrogate for Validating Thermal Treatment of Multiple Low-Moisture Foods. Journal of Food Protection, 2022, 85, 1538-1552.	1.7	7
2	Modeling the Propagation of Salmonella within Bulk Almond Using Discrete Element Method Particle Simulation Technique. Journal of Food Engineering, 2021, 293, 110363.	5.2	4
3	Process Humidity Affects Salmonella Lethality at the Surface and Core of Impingement-Cooked Meat and Poultry Products. Journal of Food Protection, 2021, 84, 1512-1523.	1.7	1
4	Kitchen-Scale Treatments for Reduction of Listeria monocytogenes in Prepared Produce. Journal of Food Protection, 2021, 84, 1603-1609.	1.7	4
5	Survival of Escherichia coli O157:H7 during Moderate Temperature Dehydration of Plant-Based Foods. Foods, 2021, 10, 2162.	4.3	4
6	Fate of Salmonella and Enterococcus faecium during Pilot-Scale Spray Drying of Soy Protein Isolate. Journal of Food Protection, 2021, 84, 674-679.	1.7	3
7	Modeling the Effects of Product Temperature, Product Moisture, and Process Humidity on Thermal Inactivation of Salmonella in Pistachios during Hot-Air Heating. Journal of Food Protection, 2021, 84, 47-57.	1.7	3
8	Influence of physical variables on the transfer of Salmonella Typhimurium LT2 between potato (Solanum tuberosum) and stainless steel via static and dynamic contact. Food Microbiology, 2020, 92, 103607.	4.2	3
9	Coldâ€batter mincing of hotâ€boned and crustâ€freezeâ€airâ€chilled ham muscle reduced fat content in protein gels. International Journal of Food Science and Technology, 2020, 55, 3267-3277.	2.7	5
10	Reproducibility of Salmonella Thermal Resistance Measurements via Multilaboratory Isothermal Inactivation Experiments. Journal of Food Protection, 2020, 83, 609-614.	1.7	6
11	Monetizing the Impact of Food Safety Recalls on the Low-Moisture Food Industry. Journal of Food Protection, 2020, 83, 829-835.	1.7	2
12	Thermal Resistance of Foodborne Pathogens and Enterococcus faecium NRRL B-2354 on Inoculated Pistachios. Journal of Food Protection, 2020, 83, 1125-1136.	1.7	9
13	Effect of Food Structure, Water Activity, and Long-Term Storage on X-Ray Irradiation for Inactivating Salmonella Enteritidis PT30 in Low-Moisture Foods. Journal of Food Protection, 2019, 82, 1405-1411.	1.7	15
14	Effect of Talc as a Dry-Inoculation Carrier on Thermal Resistance of Enterococcus faecium NRRL B-2354 in Almond Meal. Journal of Food Protection, 2019, 82, 1110-1115.	1.7	11
15	Relationships of Water Activity and Moisture Content to the Thermal Inactivation Kinetics of Salmonella in Low-Moisture Foods. Journal of Food Protection, 2019, 82, 963-970.	1.7	25
16	Predicting the Growth of Listeria monocytogenes and Salmonella Typhimurium in Diced Celery, Onions, and Tomatoes during Simulated Commercial Transport, Retail Storage, and Display. Journal of Food Protection, 2019, 82, 287-300.	1.7	26
17	Survival and Thermal Resistance of Salmonella Enteritidis PT 30 on Almonds after Long-Term Storage. Journal of Food Protection, 2019, 82, 194-199.	1.7	23
18	Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during cocoa powder thermal processing. Food Microbiology, 2019, 82, 135-141.	4.2	36

BRADLEY P MARKS

#	Article	IF	CITATIONS
19	Inoculation Protocols Influence the Thermal Resistance of Salmonella Enteritidis PT 30 in Fabricated Almond, Wheat, and Date Products. Journal of Food Protection, 2018, 81, 606-613.	1.7	29
20	Impact of Process Temperature, Humidity, and Initial Product Moisture on Thermal Inactivation of Salmonella Enteritidis PT 30 on Pistachios during Hot-Air Heating. Journal of Food Protection, 2018, 81, 1351-1356.	1.7	14
21	Comparing Thermal Process Validation Methods for Salmonella Inactivation on Almond Kernels. Journal of Food Protection, 2017, 80, 169-176.	1.7	14
22	Modeling the Effect of Temperature and Water Activity on the Thermal Resistance of Salmonella Enteritidis PT 30 in Wheat Flour. Journal of Food Protection, 2016, 79, 2058-2065.	1.7	72
23	Application of a Nonlinear Model to Transcript Levels of Upregulated Stress Response Gene ibpA in Stationary-Phase Salmonella enterica Subjected to Sublethal Heat Stress. Journal of Food Protection, 2016, 79, 1089-1096.	1.7	4
24	Effects of Inoculation Procedures on Variability and Repeatability of Salmonella Thermal Resistance in Wheat Flour. Journal of Food Protection, 2016, 79, 1833-1839.	1.7	64
25	Cross-Laboratory Comparative Study of the Impact of Experimental and Regression Methodologies on Salmonella Thermal Inactivation Parameters in Ground Beef. Journal of Food Protection, 2016, 79, 1097-1106.	1.7	7
26	Water activity change at elevated temperatures and thermal resistance of Salmonella in all purpose wheat flour and peanut butter. Food Research International, 2016, 81, 163-170.	6.2	88
27	Effect of Rapid Product Desiccation or Hydration on Thermal Resistance of Salmonella enterica Serovar Enteritidis PT 30 in Wheat Flour. Journal of Food Protection, 2015, 78, 281-286.	1.7	33
28	Use of Simulation Tools To Illustrate the Effect of Data Management Practices for Low and Negative Plate Counts on the Estimated Parameters of Microbial Reduction Models. Journal of Food Protection, 2014, 77, 1372-1379.	1.7	14
29	Tracking an Escherichia coli O157:H7–Contaminated Batch of Leafy Greens through a Pilot-Scale Fresh-Cut Processing Line. Journal of Food Protection, 2014, 77, 1487-1494.	1.7	16
30	Growth of Escherichia coli O157:H7 and Listeria monocytogenes in Packaged Fresh-Cut Romaine Mix at Fluctuating Temperatures during Commercial Transport, Retail Storage, and Display. Journal of Food Protection, 2014, 77, 197-206.	1.7	64
31	Effect of lowâ€energy Xâ€ray irradiation on physical, chemical, textural and sensory properties of Dates. International Journal of Food Science and Technology, 2013, 48, 1453-1459.	2.7	14
32	Transfer of Escherichia coli O157:H7 from Equipment Surfaces to Fresh-Cut Leafy Greens during Processing in a Model Pilot-Plant Production Line with Sanitizer-Free Water. Journal of Food Protection, 2012, 75, 1920-1929.	1.7	49
33	X-Ray Irradiation as a Microbial Intervention Strategy for Food. Annual Review of Food Science and Technology, 2012, 3, 493-510.	9.9	41
34	Quantitative Transfer of Escherichia coli O157:H7 to Equipment during Small-Scale Production of Fresh-Cut Leafy Greens. Journal of Food Protection, 2012, 75, 1184-1197.	1.7	68
35	The effect of X-ray irradiation on Salmonella inactivation and sensory quality of almonds and walnuts as a function of water activity. International Journal of Food Microbiology, 2012, 153, 365-371.	4.7	57
36	Quantifying the Performance of Pediococcus sp. (NRRL B-2354: Enterococcus faecium) as a Nonpathogenic Surrogate for Salmonella Enteritidis PT30 during Moist-Air Convection Heating of Almonds. Journal of Food Protection, 2011, 74, 603-609.	1.7	71

BRADLEY P MARKS

#	Article	IF	CITATIONS
37	Enhanced Thermal Resistance of Salmonella in Marinated Whole Muscle Compared with Ground Pork. Journal of Food Protection, 2010, 73, 372-375.	1.7	19
38	Research Note Inactivation of Escherichia coli O157:H7 on Lettuce, Using Low-Energy X-Ray Irradiation. Journal of Food Protection, 2010, 73, 547-551.	1.7	31
39	Stress, Sublethal Injury, Resuscitation, and Virulence of Bacterial Foodborne Pathogens. Journal of Food Protection, 2009, 72, 1121-1138.	1.7	393
40	Thermal Inactivation Kinetics for Salmonella Enteritidis PT30 on Almonds Subjected to Moist-Air Convection Heating. Journal of Food Protection, 2009, 72, 1602-1609.	1.7	44
41	Effect of Beef Product Physical Structure onâ€, <i>Salmonella</i> â€,Thermal Inactivation. Journal of Food Science, 2009, 74, M347-51.	3.1	17
42	Status of Microbial Modeling in Food Process Models. Comprehensive Reviews in Food Science and Food Safety, 2008, 7, 137-143.	11.7	34
43	Bayesian synthesis of a pathogen growth model: Listeria monocytogenes under competitionâ [~] †. International Journal of Food Microbiology, 2006, 109, 34-46.	4.7	11
44	Condensing-convective boundary conditions in moist air impingement ovens. Journal of Food Engineering, 2005, 70, 101-108.	5.2	6
45	Enhanced Thermal Resistance of Salmonella in Whole Muscle Compared to Ground Beef. Journal of Food Science, 2005, 70, m359-m362.	3.1	21
46	Effect of Water Activity on Thermal Inactivation of Salmonella in Ground Turkey. Journal of Food Science, 2005, 70, m363-m366.	3.1	13
47	Quantifying the Robustness of a Broth-Based Escherichia coli O157:H7 Growth Model in Ground Beef. Journal of Food Protection, 2005, 68, 2301-2309.	1.7	9
48	Thermal Resistance of Heat-, Cold-, and Starvation-Injured Salmonella in Irradiated Comminuted Turkey. Journal of Food Protection, 2005, 68, 942-948.	1.7	37
49	Webâ€Based Readiness Assessment Quizzes. Journal of Engineering Education, 2002, 91, 97-102.	3.0	7
50	Prediction of Texture of Cooked White Rice by Near-Infrared Reflectance Analysis of Whole-Grain Milled Samples. Cereal Chemistry, 2002, 79, 52-57.	2.2	27
51	Sensory Quality of Cooked Long-Grain Rice as Affected by Rough Rice Moisture Content, Storage Temperature, and Storage Duration. Cereal Chemistry, 2000, 77, 259-263.	2.2	56
52	Effects of Rough Rice Drying and Storage Conditions on Sensory Profiles of Cooked Rice. Cereal Chemistry, 1999, 76, 483-486.	2.2	53
53	Modeling coupled heat and mass transfer for convection cooking of chicken patties. Journal of Food Engineering, 1999, 42, 139-146.	5.2	65
54	Sensory Descriptive Texture Analyses of Cooked Rice and Its Correlation to Instrumental Parameters Using an Extrusion Cell. Cereal Chemistry, 1998, 75, 714-720.	2.2	79

#	Article	IF	CITATIONS
55	Relating Electrolyte Leakage to Shelled Corn Storability. Cereal Chemistry, 1998, 75, 651-655.	2.2	2