Eva Roblegg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054406/publications.pdf

Version: 2024-02-01

77 2,918 30 52 g-index
77 77 77 4376

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Models for oral uptake of nanoparticles in consumer products. Toxicology, 2012, 291, 10-17.	4.2	266
2	Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biology and Toxicology, 2014, 30, 1-16.	5.3	146
3	Development of an Advanced Intestinal in Vitro Triple Culture Permeability Model To Study Transport of Nanoparticles. Molecular Pharmaceutics, 2014, 11, 808-818.	4.6	131
4	Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. Journal of Controlled Release, 2013, 172, 872-878.	9.9	115
5	Continuous Sonocrystallization of Acetylsalicylic Acid (ASA): Control of Crystal Size. Crystal Growth and Design, 2012, 12, 4733-4738.	3.0	110
6	Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicology and Applied Pharmacology, 2010, 242, 326-332.	2.8	103
7	Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicology in Vitro, 2013, 27, 409-417.	2.4	100
8	Cytotoxicity of nanoparticles independent from oxidative stress. Journal of Toxicological Sciences, 2009, 34, 363-375.	1.5	99
9	Saliva: An all-rounder of our body. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 133-141.	4.3	90
10	The oral cavity as a biological barrier system: Design of an advanced buccal in vitro permeability model. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 386-393.	4.3	89
11	Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity. Particle and Fibre Toxicology, 2012, 9, 26.	6.2	87
12	Evaluation of a physiological in vitro in vitro to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology, 2012, 6, 399-413.	3.0	87
13	Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Archives of Toxicology, 2016, 90, 2297-2314.	4.2	67
14	Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 635-645.	4.3	64
15	Supervisory Control System for Monitoring a Pharmaceutical Hot Melt Extrusion Process. AAPS PharmSciTech, 2013, 14, 1034-1044.	3.3	57
16	Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion. International Journal of Pharmaceutics, 2013, 455, 159-168.	5.2	56
17	Cytotoxity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing. Nanotoxicology, 2012, 6, 424-439.	3.0	53
18	Inâ€Vitro Permeability of Neutral Polystyrene Particles via Buccal Mucosa. Small, 2013, 9, 457-466.	10.0	51

#	Article	IF	Citations
19	Nano-extrusion: A promising tool for continuous manufacturing of solid nano-formulations. International Journal of Pharmaceutics, 2014, 477, 1-11.	5.2	51
20	Assessment of Long-Term Effects of Nanoparticles in a Microcarrier Cell Culture System. PLoS ONE, 2013, 8, e56791.	2.5	49
21	Nano-extrusion: a One-Step Process for Manufacturing of Solid Nanoparticle Formulations Directly from the Liquid Phase. AAPS PharmSciTech, 2013, 14, 601-604.	3.3	48
22	Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro. Toxicology, 2017, 378, 25-36.	4.2	48
23	Mucus as Barrier for Drug Delivery by Nanoparticles. Journal of Nanoscience and Nanotechnology, 2014, 14, 126-136.	0.9	47
24	The buccal mucosa as a route for TiO ₂ nanoparticle uptake. Nanotoxicology, 2015, 9, 253-261.	3.0	45
25	Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. Journal of Hazardous Materials, 2015, 286, 298-305.	12.4	43
26	Development of nanostructured lipid carriers for intraoral delivery of Domperidone. International Journal of Pharmaceutics, 2017, 526, 188-198.	5.2	40
27	Plasma proteins facilitates placental transfer of polystyrene particles. Journal of Nanobiotechnology, 2020, 18, 128.	9.1	38
28	The effect of saliva on the fate of nanoparticles. Clinical Oral Investigations, 2018, 22, 929-940.	3.0	37
29	In-line implementation of an image-based particle size measurement tool to monitor hot-melt extruded pellets. International Journal of Pharmaceutics, 2014, 466, 181-189.	5.2	32
30	Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties. International Journal of Nanomedicine, 2012, 7, 2523.	6.7	31
31	Carboxylated Short Single-Walled Carbon Nanotubes But Not Plain and Multi-Walled Short Carbon Nanotubes Show in vitro Genotoxicity. Toxicological Sciences, 2015, 144, 114-127.	3.1	28
32	Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food and Chemical Toxicology, 2020, 144, 111621.	3.6	28
33	Surface-Induced Polymorphism as a Tool for Enhanced Dissolution: The Example of Phenytoin. Crystal Growth and Design, 2015, 15, 4687-4693.	3.0	27
34	Intracellular calcium levels as screening tool for nanoparticle toxicity. Journal of Applied Toxicology, 2015, 35, 1150-1159.	2.8	24
35	Reaction of monocytes to polystyrene and silica nanoparticles in short-term and long-term exposures. Toxicology Research, 2014, 3, 86.	2.1	23
36	Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes. Nanotoxicology, 2012, 7, 1211-1224.	3.0	22

#	Article	IF	Citations
37	Suitability of Cell-Based Label-Free Detection for Cytotoxicity Screening of Carbon Nanotubes. BioMed Research International, 2013, 2013, 1-13.	1.9	22
38	Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 153-160.	4.3	21
39	Optimization of an oral mucosa <i>in vitro</i> model based on cell line TR146. Tissue Barriers, 2020, 8, 1748459.	3.2	21
40	Development of lipophilic calcium stearate pellets using ibuprofen as model drug. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 56-62.	4.3	20
41	Development of an Abuse- and Alcohol-Resistant Formulation Based on Hot-Melt Extrusion and Film Coating. AAPS PharmSciTech, 2016, 17, 68-77.	3.3	19
42	Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose. Molecular Pharmaceutics, 2018, 15, 2827-2839.	4.6	18
43	Investigation of Changes in Saliva in Radiotherapy-Induced Head Neck Cancer Patients. International Journal of Environmental Research and Public Health, 2021, 18, 1629.	2.6	18
44	Use of whole genome expression analysis in the toxicity screening of nanoparticles. Toxicology and Applied Pharmacology, 2014, 280, 272-284.	2.8	17
45	Atomic force microscopy as analytical tool to study physico-mechanical properties of intestinal cells. Beilstein Journal of Nanotechnology, 2015, 6, 1457-1466.	2.8	17
46	Controlled-Release from High-Loaded Reservoir-Type Systemsâ€"A Case Study of Ethylene-Vinyl Acetate and Progesterone. Pharmaceutics, 2020, 12, 103.	4.5	17
47	Ibuprofen-Loaded Calcium Stearate Pellets: Drying-Induced Variations in Dosage Form Properties. AAPS PharmSciTech, 2012, 13, 686-698.	3.3	16
48	Morphologies in Solvent-Annealed Clotrimazole Thin Films Explained by Hansen-Solubility Parameters. Crystal Growth and Design, 2014, 14, 1386-1391.	3.0	16
49	Comprehensive investigations of fibroin and poly(ethylenimine) functionalized fibroin nanoparticles for ulcerative colitis treatment. Journal of Drug Delivery Science and Technology, 2020, 57, 101484.	3.0	16
50	Rational Design and Characterization of a Nanosuspension for Intraoral Administration Considering Physiological Conditions. Journal of Pharmaceutical Sciences, 2016, 105, 257-267.	3.3	15
51	Development of Porous Polyurethane Implants Manufactured via Hot-Melt Extrusion. Polymers, 2020, 12, 2950.	4.5	15
52	Particular Film Formation of Phenytoin at Silica Surfaces. Molecular Pharmaceutics, 2014, 11, 610-616.	4.6	14
53	NANEX: Process design and optimization. International Journal of Pharmaceutics, 2016, 506, 35-45.	5. 2	14
54	Establishment of a Molding Procedure to Facilitate Formulation Development for Co-extrudates. AAPS PharmSciTech, 2017, 18, 2971-2976.	3.3	14

#	Article	IF	CITATIONS
55	How does secondary processing affect the physicochemical properties of inhalable salbutamol sulphate particles? A temporal investigation. International Journal of Pharmaceutics, 2017, 528, 416-428.	5.2	13
56	Itraconazole Nanocrystals on Hydrogel Contact Lenses via Inkjet Printing: Implications for Ophthalmic Drug Delivery. ACS Applied Nano Materials, 2022, 5, 9435-9446.	5.0	12
57	Reformulation of a codeine phosphate liquid controlled-release product. Drug Development and Industrial Pharmacy, 2010, 36, 1454-1462.	2.0	11
58	Morphologies of Phenytoin Crystals at Silica Model Surfaces: Vapor Annealing versus Drop Casting. Journal of Physical Chemistry C, 2014, 118, 12855-12861.	3.1	11
59	Delivery of Dry Powders to the Lungs: Influence of Particle Attributes from a Biological and Technological Point of View. Current Drug Delivery, 2019, 16, 180-194.	1.6	11
60	Toward a new generation of vaginal pessaries via 3D-printing: Concomitant mechanical support and drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 174, 77-89.	4.3	11
61	Interaction of Differently Coated Silver Nanoparticles With Skin and Oral Mucosal Cells. Journal of Pharmaceutical Sciences, 2021, 110, 2250-2261.	3.3	10
62	Crystallographic Textures and Morphologies of Solution Cast Ibuprofen Composite Films at Solid Surfaces. Molecular Pharmaceutics, 2014, 11, 4084-4091.	4.6	9
63	Insights into the processability and performance of adhesive blends of inhalable jet-milled and spray dried salbutamol sulphate at different drug loads. Journal of Drug Delivery Science and Technology, 2018, 48, 466-477.	3.0	9
64	Hot Melt Extrusion as a Continuous Pharmaceutical Manufacturing Process. AAPS Advances in the Pharmaceutical Sciences Series, 2013, , 363-396.	0.6	9
65	One Polymorph and Various Morphologies of Phenytoin at a Silica Surface Due to Preparation Kinetics. Crystal Growth and Design, 2015, 15, 326-332.	3.0	8
66	A novel In Vitro Model for Studying Nanoparticle Interactions with the Small Intestine. EURO-NanoTox-Letters, 2016, 6, 1-14.	1.0	8
67	Use of the Direct Compression Aid Ludiflash $\hat{A}^{@}$ for the preparation of pellets via wet extrusion/spheronization. Drug Development and Industrial Pharmacy, 2011, 37, 1231-1243.	2.0	7
68	Microstructure of Calcium Stearate Matrix Pellets: A Function of the Drying Process. Journal of Pharmaceutical Sciences, 2013, 102, 3987-3997.	3.3	7
69	Comparing freeze drying and spray drying of interleukins using model protein CXCL8 and its variants. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 168, 152-165.	4.3	7
70	Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles. Pharmaceutics, 2022, 14, 803.	4.5	7
71	Pore blocking: An innovative formulation strategy for the design of alcohol resistant multi-particulate dosage forms. International Journal of Pharmaceutics, 2016, 509, 219-228.	5.2	5
72	Cytokine-Mediated Inflammation in the Oral Cavity and Its Effect on Lipid Nanocarriers. Nanomaterials, 2021, 11, 1330.	4.1	5

#	Article	IF	CITATION
73	The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian Journal of Pharmaceutical Sciences, 2021, 16, 471-482.	9.1	5
74	Mucus as Physiological Barrier to Intracellular Delivery. Fundamental Biomedical Technologies, 2014, , 139-163.	0.2	5
75	Titanium dioxide nanoparticles and the oral uptake-route. BioNanoMaterials, 2013, 14, 25-35.	1.4	3
76	Investigations to Evaluate Gastric Mucoadhesion of an Organic Product to Ameliorate Gastritis. Pharmaceutics, 2020, 12, 331.	4.5	3
77	Effect of solvent compositions on habits and in vitro aerodynamic results of spray-dried pulmonary formulations. , 2021, , .		0