Xiang-Rong Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrophilic thymol isobutyrate from Inula nervosa Wall. (Xiaoheiyao) ameliorates steatosis in HepG2 cells via Nrf2 activation. Journal of Functional Foods, 2022, 88, 104895.	1.6	4
2	Effects of Ejiao peptide–iron chelates on intestinal inflammation and gut microbiota in iron deficiency anemic mice. Food and Function, 2021, 12, 10887-10902.	2.1	12
3	Chemical Space Charting of Different Parts of Inula nervosa Wall.: Upregulation of Expression of Nrf2 and Correlated Antioxidants Enzymes. Molecules, 2020, 25, 4789.	1.7	5
4	Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. Journal of Agricultural and Food Chemistry, 2020, 68, 7745-7756.	2.4	39
5	Flavor Components Comparison between the Neck Meat of Donkey, Swine, Bovine, and Sheep. Food Science of Animal Resources, 2020, 40, 527-540.	1.7	22
6	Structural characterization of an active polysaccharide of longan and evaluation of immunological activity. Carbohydrate Polymers, 2019, 213, 247-256.	5.1	73
7	Biochemical Composition and Sensory Evaluation of Desert Date Flowers (Balanites aegyptiaca Del) Infusion. Current Research in Nutrition and Food Science, 2019, 7, 686-697.	0.3	4
8	Niga-ichigoside F1 ameliorates high-fat diet-induced hepatic steatosis in male mice by Nrf2 activation. Food and Function, 2018, 9, 906-916.	2.1	22
9	Dietary methionine restriction regulated energy and protein homeostasis by improving thyroid function in high fat diet mice. Food and Function, 2018, 9, 3718-3731.	2.1	36
10	Dityrosine administration induces dysfunction of insulin secretion accompanied by diminished thyroid hormones T3 function in pancreas of mice. Amino Acids, 2017, 49, 1401-1414.	1.2	20
11	Role of miR-383 and miR-146b in different propensities to obesity in male mice. Journal of Endocrinology, 2017, 234, 201-216.	1.2	16
12	Metabolomic studies on the systemic responses of mice with oxidative stress induced by short-term oxidized tyrosine administration. RSC Advances, 2017, 7, 28591-28605.	1.7	16
13	Effect of dietary oxidized tyrosine products on insulin secretion via the oxidative stress-induced mitochondria damage in mice pancreas. RSC Advances, 2017, 7, 26809-26826.	1.7	22
14	Effects of dietary oxidized tyrosine products on insulin secretion via the thyroid hormone T3-regulated TRI²1–Akt–mTOR pathway in the pancreas. RSC Advances, 2017, 7, 54610-54625.	1.7	12
15	Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2251-2267.	2.0	8
16	Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress. Physiology and Behavior, 2015, 138, 325-331.	1.0	76
17	Preparation and structural characterization of poly-mannose synthesized by phosphoric acid catalyzation under microwave irradiation. Carbohydrate Polymers, 2015, 121, 355-361.	5.1	16
18	Synthesis and evaluation of new α-methylene-γ-lactone carbamates with NO production inhibitory effects in lipopolysaccharide-induced RAW 264.7 macrophages. European Journal of Medicinal Chemistry, 2015, 93, 274-280.	2.6	7

XIANG-RONG CHENG

#	Article	IF	CITATIONS
19	Resveratrol restores the circadian rhythmic disorder of lipid metabolism induced by high-fat diet in mice. Biochemical and Biophysical Research Communications, 2015, 458, 86-91.	1.0	88
20	Role of thyroid hormone homeostasis in obesity-prone and obesity-resistant mice fed a high-fat diet. Metabolism: Clinical and Experimental, 2015, 64, 566-579.	1.5	44
21	One new unusual sesterterpenoid and four new sesquiterpene dimers from Inula britannica. RSC Advances, 2015, 5, 1979-1982.	1.7	17
22	A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA. Food Chemistry, 2015, 166, 231-239.	4.2	41
23	Antioxidant and antibacterial activities of extracts from Conyza bonariensis growing in Yemen. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 129-34.	0.2	5
24	New sesquiterpenic acids from Inula wissmanniana. Fìtoterapìâ, 2014, 95, 139-146.	1.1	5
25	<i>Inula</i> sesquiterpenoids: structural diversity, cytotoxicity and anti-tumor activity. Expert Opinion on Investigational Drugs, 2014, 23, 317-345.	1.9	100
26	Winolides A–C, bioactive sesquiterpene lactones with unusual 5,6-secoeudesmane frameworks from Inula wissmanniana. RSC Advances, 2014, 4, 33815.	1.7	7
27	Î ³ -Hydroxynitrile glucosides from the seeds of Prinsepia utilis. Phytochemistry, 2014, 105, 135-140.	1.4	13
28	Chemical Constituents of Inula falconeri. Chemistry of Natural Compounds, 2014, 50, 342-343.	0.2	1
29	Chemical constiuents of Euonymus acanthocarpus. Chemistry of Natural Compounds, 2013, 49, 383-387.	0.2	6
30	A new coumarin from Daphne pedunculata. Chemistry of Natural Compounds, 2013, 49, 426-427.	0.2	4
31	Chemical Constituents from Aphanamixis grandifolia. Chemistry of Natural Compounds, 2013, 49, 486-492.	0.2	24
32	Chemical Constituents from Inula wissmanniana. Chemistry of Natural Compounds, 2013, 49, 815-818.	0.2	6
33	Phytochemical studies on Inula hookeri. Chemistry of Natural Compounds, 2013, 49, 121-123.	0.2	1
34	Bioactive eudesmane and germacrane derivatives from Inula wissmanniana HandMazz Phytochemistry, 2013, 96, 214-222.	1.4	24
35	Chemical constituents from Metasequoia glyptostroboides HuÂet Cheng. Biochemical Systematics and Ecology, 2013, 50, 406-410.	0.6	10
36	Sesquiterpene Lactones from <i>Inula hookeri</i> . Planta Medica, 2012, 78, 465-471.	0.7	28

XIANG-RONG CHENG

#	Article	IF	CITATIONS
37	Lineariifolianoids A–D, rare unsymmetrical sesquiterpenoid dimers comprised of xanthane and guaiane framework units from Inula lineariifolia. RSC Advances, 2012, 2, 1307.	1.7	28
38	Norlignans and Phenylpropanoids from Metasequoia glyptostroboidesHu et Cheng. Helvetica Chimica Acta, 2012, 95, 606-612.	1.0	6
39	Taraxasterane-Type Triterpene and Neolignans from <i>Geum japonicum</i> Thunb. var. <i>chinense</i> F. Bolle. Planta Medica, 2011, 77, 2061-2065.	0.7	17
40	Sesquiterpene lactones from Inula falconeri, a plant endemic to the Himalayas, as potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 2011, 46, 5408-5415.	2.6	64
41	Chemical constituents from Verbena officinalis. Chemistry of Natural Compounds, 2011, 47, 319-320.	0.2	8
42	Three New Neolignans and One New Phenylpropanoid from the Leaves and Stems of <i>Toona ciliata</i> var. <i>pubescens</i> . Helvetica Chimica Acta, 2011, 94, 1685-1691.	1.0	7
43	Chemical Constituents of Plants from the Genus <i>Geum</i> . Chemistry and Biodiversity, 2011, 8, 203-222.	1.0	20