List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054234/publications.pdf Version: 2024-02-01

Υπηνιή Για

#	Article	IF	CITATIONS
1	Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Advances, 2012, 2, 9763.	3.6	211
2	Recent Advances in Diversity Oriented Synthesis through Isatinâ€based Multicomponent Reactions. Asian Journal of Organic Chemistry, 2013, 2, 374-386.	2.7	196
3	Tandem reactions initiated by copper-catalyzed cross-coupling: A new strategy towards heterocycle synthesis. Organic and Biomolecular Chemistry, 2011, 9, 6873.	2.8	192
4	KIO ₃ -Catalyzed Aerobic Cross-Coupling Reactions of Enaminones and Thiophenols: Synthesis of Polyfunctionalized Alkenes by Metal-Free C–H Sulfenylation. Organic Letters, 2016, 18, 584-587.	4.6	138
5	Visible Light-Induced Thiocyanation of Enaminone C–H Bond to Access Polyfunctionalized Alkenes and Thiocyano Chromones. Journal of Organic Chemistry, 2019, 84, 2243-2251.	3.2	126
6	Synthesis of Dihydropyrimidinones and Thiones by Multicomponent Reactions: Strategies Beyond the Classical Biginelli Reaction. Synthesis, 2010, 2010, 3943-3953.	2.3	113
7	Transition metal-catalyzed C–H bond functionalization in multicomponent reactions: a tool toward molecular diversity. Organic and Biomolecular Chemistry, 2017, 15, 9031-9043.	2.8	110
8	Base-Promoted Synthesis of <i>N</i> -Substituted 1,2,3-Triazoles via Enaminone–Azide Cycloaddition Involving Regitz Diazo Transfer. Organic Letters, 2016, 18, 6034-6037.	4.6	99
9	Advances in Copperâ€Catalyzed CC Coupling Reactions and Related Domino Reactions Based on Active Methylene Compounds. Chemistry - an Asian Journal, 2012, 7, 1488-1501.	3.3	91
10	A Metal- and Azide-Free Multicomponent Assembly toward Regioselective Construction of 1,5-Disubstituted 1,2,3-Triazoles. Journal of Organic Chemistry, 2015, 80, 9028-9033.	3.2	91
11	Bio-based green solvent mediated disulfide synthesis via thiol couplings free of catalyst and additive. RSC Advances, 2013, 3, 21369.	3.6	77
12	KIO ₃ atalyzed Domino C(sp ²)â^'H Bond Sulfenylation and Câ^'N Bond Oxygenation of Enaminones toward the Synthesis of 3â€Sulfenylated Chromones. ChemCatChem, 2017, 9, 465-468.	3.7	76
13	Synthesis of 3-sulfenylated indoles by a simple NaOH promoted sulfenylation reaction. RSC Advances, 2014, 4, 35528.	3.6	68
14	Cu ₂ O-Catalyzed Tandem Ring-Opening/Coupling Cyclization Process for the Synthesis of 2,3-Dihydro-1,4-benzodioxins. Organic Letters, 2008, 10, 3899-3902.	4.6	64
15	Metal-free oxidative carbonylation on enaminone Cĩ€€ bond for the cascade synthesis of benzothiazole-containing vicinal diketones. Green Chemistry, 2016, 18, 402-405.	9.0	63
16	The Domino Chromone Annulation and a Transient Halogenation-Mediated C–H Alkenylation toward 3-Vinyl Chromones. Organic Letters, 2020, 22, 9518-9523.	4.6	63
17	Copper-catalyzed, hypervalent iodine mediated Cî€C bond activation of enaminones for the synthesis of α-keto amides. Chemical Communications, 2016, 52, 1270-1273.	4.1	59
18	Transition metal-free synthesis of 3-trifluoromethyl chromones <i>via</i> tandem C–H trifluoromethylation and chromone annulation of enaminones. Organic Chemistry Frontiers, 2020, 7, 2770-2775.	4.5	58

9.0

40

#	Article	IF	CITATIONS
19	C–H bond halogenation catalyzed or mediated by copper: an overview. Beilstein Journal of Organic Chemistry, 2015, 11, 2132-2144.	2.2	56
20	Pd-Catalyzed Triple-Fold C(sp ²)–H Activation with Enaminones and Alkenes for Pyrrole Synthesis via Hydrogen Evolution. Organic Letters, 2021, 23, 4363-4367.	4.6	53
21	Diastereoselective Construction of Tetrahydropyridine Fused Bicyclic Structures via Three-Component Domino Reaction. Journal of Organic Chemistry, 2014, 79, 7232-7238.	3.2	52
22	DMSO as a C ₁ Source for [2 + 2 + 1] Pyrazole Ring Construction via Metal-Free Annulation with Enaminones and Hydrazines. Organic Letters, 2022, 24, 228-233.	4.6	52
23	Regioselective three-component synthesis of 2,3-disubstituted quinolines <i>via</i> the enaminone modified Povarov reaction. Organic and Biomolecular Chemistry, 2017, 15, 9585-9589.	2.8	51
24	Copper(I)â€Catalyzed Oneâ€Pot Synthesis of 2â€Iminobenzo―1,3â€oxathioles from <i>ortho</i> â€Iodophenols Isothiocyanates. Advanced Synthesis and Catalysis, 2008, 350, 2507-2512.	and 4.3	49
25	Sustainable H2O/ethyl lactate system for ligand-free Suzuki–Miyaura reaction. RSC Advances, 2012, 2, 8789.	3.6	49
26	Stereoselective Z-halosulfonylation of terminal alkynes using sulfonohydrazides and CuX (X = Cl, Br,) Tj ETQq0 0 C)rg₿T /Ov	erlock 10 Tf
27	Selectivity tunable divergent synthesis of 1,4- and 1,2-dihydropyridines via three-component reactions. Tetrahedron, 2014, 70, 7874-7880.	1.9	47
28	Water-Promoted Synthesis of Enaminones: Mechanism Investigation and Application in Multicomponent Reactions. Synthetic Communications, 2013, 43, 2475-2483.	2.1	45
29	Electrochemical enaminone C–H thiolation/C–N amination cascade for thiazole synthesis and its diastereoselective dearomatization. Green Chemistry, 2022, 24, 5058-5063.	9.0	45
30	Toward C2-nitrogenated chromones by copper-catalyzed β-C(sp ²)–H N-heteroarylation of enaminones. Organic Chemistry Frontiers, 2020, 7, 1107-1112.	4.5	43
31	Azideâ€Free Synthesis of 1,2,3â€Triazoles: New Opportunity for Sustainable Synthesis. ChemCatChem, 2015, 7, 901-903.	3.7	42
32	Electrochemical C-H Halogenations of Enaminones and Electron-Rich Arenes with Sodium Halide (NaX) as Halogen Source for the Synthesis of 3-Halochromones and Haloarenes. Journal of Organic Chemistry, 2021, 86, 12378-12385.	3.2	41
33	Mild Copper(I) Iodide/β-Keto Ester Catalyzed Coupling Reactions of Styryl Bromides with Phenols, Thiophenols, and Imidazoles. Synthesis, 2008, 2008, 1911-1917.	2.3	40
34	Copper-Catalyzed One-Pot <i>N</i> -Acylation and C5–H Halogenation of 8-Aminoquinolines: The Dual Role of Acyl Halides. Journal of Organic Chemistry, 2018, 83, 3403-3408.	3.2	40

35	In-Water Synthesis of 5-Thiolated 1,2,3-Triazoles from β-Thioenaminones by Diazo Transfer Reaction. Journal of Organic Chemistry, 2019, 84, 14179-14186.	3.2	40

³⁶ Metal-free C(sp2)-H perfluoroalkylsulfonylation and configuration inversion: Stereoselective synthesis of 1±-perfluoroalkylsulfonyl E-enaminones. Chinese Chemical Letters, 2021, 32, 3514-3517.

#	Article	IF	CITATIONS
37	Annulation based on 8-aminoquinoline assisted C–H activation: an emerging tool in N-heterocycle construction. Organic Chemistry Frontiers, 2016, 3, 768-772.	4.5	39
38	Copper-Catalyzed, C–C Coupling-Based One-Pot Tandem Reactions for the Synthesis of Benzofurans Using <i>o</i> -Iodophenols, Acyl Chlorides, and Phosphorus Ylides. Journal of Organic Chemistry, 2014, 79, 10599-10604.	3.2	38
39	lodine-mediated synthesis of sulfur-bridged enaminones and chromones via double C(sp2)–H thiolation. Organic and Biomolecular Chemistry, 2017, 15, 4631-4634.	2.8	38
40	Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Advanced Synthesis and Catalysis, 2022, 364, 1508-1521.	4.3	38
41	Base-Promoted Annulative Difluoromethylenation of Enaminones with BrCF ₂ CO ₂ Et toward 2,2-Difluorinated 2,3-Dihydrofurans. Organic Letters, 2022, 24, 2404-2408.	4.6	37
42	Copper-Catalyzed C5–H Sulfenylation of Unprotected 8-Aminoquinolines Using Sulfonyl Hydrazides. Journal of Organic Chemistry, 2018, 83, 11385-11391.	3.2	35
43	Amine-catalyzed synthesis of N2-sulfonyl 1,2,3-triazole in water and the tunable N2-H 1,2,3-triazole synthesis in DMSO via metal-free enamine annulation. Chinese Chemical Letters, 2022, 33, 855-858.	9.0	35
44	Synthesis of 2-Vinylbenzofurans via the Copper-Catalyzed Multicomponent Reactions Involving an Oxa-Michael/Arylation/Vinylation Cascade. Organic Letters, 2014, 16, 5160-5163.	4.6	34
45	Switchable Synthesis of α,αâ€Dihalomethyl and α,α,αâ€Trihalomethyl Ketones by Metalâ€Free Decomposition Enaminone C=C Double Bond. Advanced Synthesis and Catalysis, 2020, 362, 877-883.	of 4.3	34
46	Scissoring Enaminone C╀ Double Bond by Free Radical Process for the Synthesis of α-Trifluoromethyl Ketones with CF ₃ SO ₂ Na. Journal of Organic Chemistry, 2021, 86, 1231-1237.	3.2	34
47	Transitionâ€Metalâ€Free C(<i>sp</i> ²)â€H Dithiocarbamation and Chromone Annulation Cascade for 3â€Dithiocarbamyl Chromone Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 4811-4816.	4.3	34
48	Synthesis of Enaminoneâ€₽d(II) Complexes and Their Application in Catalysing Aqueous Suzukiâ€Miyaura Cross Coupling Reaction. Chinese Journal of Chemistry, 2020, 38, 254-258.	4.9	33
49	Recent Advances in the C(sp ²)-S Bond Formation Reactions by Transition Metal-Free C(sp ²)-H Functionalization. Chinese Journal of Organic Chemistry, 2017, 37, 1667.	1.3	32
50	Domino Reactions Initiated by Copperâ€Catalyzed Arylâ€l Bond Thiolation For the Switchable Synthesis of 2,3â€Dihydrobenzothiazinones and Benzoisothiazolones. Advanced Synthesis and Catalysis, 2019, 361, 550-555.	4.3	31
51	Enaminone ligand-assisted homo- and cross-coupling of terminal alkynes under mild conditions. Tetrahedron Letters, 2013, 54, 3953-3955.	1.4	30
52	Catalytic Asymmetric Biginelli Reaction for the Enantioselective Synthesis of 3,4- Dihydropyrimidinones (DHPMs). Current Organic Chemistry, 2014, 18, 687-699.	1.6	30
53	Copper-catalyzed C–H/N–H annulation of enaminones and alkynyl esters for densely substituted pyrrole synthesis. Chemical Communications, 2022, 58, 1808-1811.	4.1	30
54	Recent Advances on Multicomponent Reactions Based on the Transamination Process of Electron Deficient Enamines. Chinese Journal of Organic Chemistry, 2014, 34, 876.	1.3	29

#	Article	IF	CITATIONS
55	Transitionâ€Metalâ€Free Indole C3 Sulfenylation by KIO ₃ Catalysis. Asian Journal of Organic Chemistry, 2018, 7, 371-373.	2.7	28
56	Palladiumâ€Free Synthesis of Conjugated Enynes by Direct Olefination of Terminal Alkynes Using Vinyl Bromides. European Journal of Organic Chemistry, 2009, 2009, 5317-5320.	2.4	27
57	Metal-free synthesis of 1,3,5-trisubstituted benzenes by the cyclotrimerization of enaminones or alkynes in water. RSC Advances, 2014, 4, 20499-20505.	3.6	27
58	Metal-free enaminone C–N bond cyanation for the stereoselective synthesis of (<i>E</i>)- and (<i>Z</i>)-β-cyano enones. Chemical Communications, 2021, 57, 9112-9115.	4.1	27
59	Secondary amine-initiated three-component synthesis of 3,4-dihydropyrimidinones and thiones involving alkynes, aldehydes and thiourea/urea. Beilstein Journal of Organic Chemistry, 2014, 10, 287-292.	2.2	24
60	Synthesis of heteroaryl containing sulfides via enaminone ligand assisted, copper-catalyzed C–S coupling reactions of heteroaryl thiols and aryl halides. RSC Advances, 2014, 4, 37733.	3.6	24
61	Disulfides as efficient thiolating reagents enabling selective bis-sulfenylation of aryl dihalides under mild copper-catalyzed conditions. RSC Advances, 2014, 4, 19472-19475.	3.6	24
62	Copper-Catalyzed Enaminone C(sp ²)–N Bond Phosphonation for Stereoselective Synthesis of Alkenylphosphonates. Journal of Organic Chemistry, 2021, 86, 9861-9868.	3.2	24
63	Rh-Catalyzed [4 + 2] Annulation with a Removable Monodentate Structure toward Iminopyranes and Pyranones by C–H Annulation. Organic Letters, 2022, 24, 3003-3008.	4.6	24
64	Tunable Di―and Monoâ€Î³â€Câ^'H Arylation of Phenylacetamides by Palladiumâ€Catalyzed Domino Reactions. ChemCatChem, 2016, 8, 1470-1473.	3.7	23
65	Selective Mono―and Di (aryl)â^'H Sulfenylation of Benzamides by Oneâ€Pot Assembly of 8â€Aminoquinoline Benzoyl chlorides, and Thiophenols. Asian Journal of Organic Chemistry, 2017, 6, 41-43.	' 2.7	23
66	Alkyl Propiolates Participated [3+2] Annulation for the Switchable Synthesis of 1,5―and 1,4â€Disubstituted 1,2,3â€Triazoles Containing Ester Side Chain. ChemCatChem, 2018, 10, 5007-5011.	3.7	23
67	Transition Metalâ€Free, Freeâ€Radical Sulfenylation of the αâ€C(<i>sp</i> ³)â^'H Bond in Arylacetamides and Its Application Toward 2â€Thiomethyl Benzoxazoles Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 4627-4631.	4.3	23
68	Step economical synthesis of o-aryl benzamides via C–H activation relayed by the in situ installation of directing group: a multicomponent method. RSC Advances, 2015, 5, 46192-46196.	3.6	22
69	Multicomponent Reactions Promoted by Organosilicon Reagents. Current Organic Chemistry, 2011, 15, 2758-2773.	1.6	21
70	Chemoâ€selective copperâ€catalyzed Câ€O coupling reactions of phenols with aryl/vinyl halides using enaminone as efficient ligand. Applied Organometallic Chemistry, 2012, 26, 445-447.	3.5	21
71	A "byproduct–intermediate–product―recycling strategy for multicomponent synthesis of 1,4-dihydropyridines. RSC Advances, 2013, 3, 2477.	3.6	21
72	Multicomponent Reactions for Diverse Synthesis of <i>N</i> ‣ubstituted and NH 1,4â€Dihydropyridines. Chinese Journal of Chemistry, 2014, 32, 219-226.	4.9	21

#	Article	IF	CITATIONS
73	An organocatalytic multi-molecular cascade reaction for the synthesis of acetate functionalized 1,4-dihydropyridines. Tetrahedron, 2015, 71, 6094-6098.	1.9	21
74	Synthesis of 3-halochromones with simple KX halogen sources enabled by <i>in situ</i> halide oxidation. New Journal of Chemistry, 2020, 44, 8120-8124.	2.8	21
75	Ultrasound-Promoted Synthesis of α-Thiocyanoketones via Enaminone C╀ Bond Cleavage and Tunable One-Pot Access to 4-Aryl-2-aminothiazoles. Journal of Organic Chemistry, 2022, 87, 8248-8255.	3.2	21
76	Copper-catalyzed tandem process: an efficient approach to 2-substituted-1,4-benzodioxanes. Organic and Biomolecular Chemistry, 2010, 8, 2700.	2.8	20
77	Copper(<scp>ii</scp>)-mediated, carbon degradation-based amidation of phenylacetic acids toward <i>N</i> -substituted benzamides. Organic and Biomolecular Chemistry, 2018, 16, 1552-1556.	2.8	19
78	Copper-Catalyzed Selective Single Arylsulfanylation of Aryl Diiodides with Aryl Thiols. Synthesis, 2013, 45, 2977-2982.	2.3	18
79	Metalâ€Free C=C Double Bond Cleavage on Enaminones for the Synthesis of αâ€Ketoamides by Freeâ€Radical Aerobic Oxygenation. European Journal of Organic Chemistry, 2019, 2019, 4422-4425.	2.4	18
80	Simple Conversion of Thiols to Disulfides in EtOH under Ambient Aerobic Conditions without using any Catalyst or Additive. Journal of Chemical Research, 2014, 38, 96-97.	1.3	17
81	Regioselective three-component reactions of enaminones, 2-aminopyridines and enals for the synthesis of 1,2-dihydropyridines. RSC Advances, 2015, 5, 27372-27374.	3.6	17
82	Synthesis of enaminones containing diverse N,N-disubstitution via simple transamination: a study with sustainable catalyst-free operation. Research on Chemical Intermediates, 2017, 43, 5547-5555.	2.7	17
83	Copper-catalyzed tandem aryl–halogen hydroxylation and CH ₂ Cl ₂ -based N,O-acetalization toward the synthesis of 2,3-dihydrobenzoxazinones. Organic and Biomolecular Chemistry, 2017, 15, 3423-3426.	2.8	17
84	Multicomponent Synthesis of Diverse <i>o</i> -Arylated Benzamides via <i>o</i> -Aminophenol (OAP) Directed C(sp ²)-H Arylation. Journal of Organic Chemistry, 2017, 82, 8950-8957.	3.2	17
85	Metal-Free Vinyl C–H Sulfenylation/Alkyl Thiolation of Ketene Dithioacetals for the Synthesis of Polythiolated Alkenes. ACS Omega, 2018, 3, 11890-11895.	3.5	17
86	Recent Advances in Organic Synthesis Employing Ethyl Lactate as Green Reaction Medium. Chinese Journal of Organic Chemistry, 2016, 36, 954.	1.3	17
87	Metal-Free C2-H Aminocarbonylation of Pyridines for the Synthesis of Picolinamides. Acta Chimica Sinica, 2019, 77, 418.	1.4	16
88	Synthesis of 3,3-Dihalogenated 2-Aminochromanones via Tandem Dihalogenation and Cyclization of <i>o</i> -Hydroxyarylenaminones with NXS (X = Cl or Br). Journal of Organic Chemistry, 2021, 86, 15785-15791.	3.2	16
89	Bio-Based Solvent Mediated Synthesis of Dihydropyrimidinthiones Via Biginelli Reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 791-795.	1.6	14
90	Synthesis of β,β-diaryl propiophenones via palladium-catalyzed domino arylboronation, elimination and enone hydroarylation of enaminones. Organic and Biomolecular Chemistry, 2016, 14, 6270-6273.	2.8	14

#	Article	IF	CITATIONS
91	Metal-Free Synthesis of 1,2,3-Triazoles in Pure Water via the Enamine Modified Annulation Reactions with Tosyl Azide. Chinese Journal of Organic Chemistry, 2021, 41, 2700.	1.3	14
92	Metal-free synthesis of cyano acrylates via cyanuric chloride-mediated three-component reactions involving a cascade consists of Knoevenagel condensation/cyano hydration/esterification. RSC Advances, 2014, 4, 63997-64000.	3.6	13
93	Enaminone-Based Three-Component Reactions for the Diastereoselective Synthesis of Fused Tetrahydropyridines. Synthesis, 2015, 47, 3611-3617.	2.3	13
94	Tunable Single and Double γâ€Câ^'H Arylation of Phenylacetamides Directed by o â€Aminophenols. Advanced Synthesis and Catalysis, 2019, 361, 4989-4997.	4.3	13
95	Direct synthesis of enaminone functionalized biaryl ethers by Cul-catalyzed O-arylation of enaminone functionalized phenols. Organic and Biomolecular Chemistry, 2011, 9, 6481.	2.8	12
96	Copper-catalyzed one-pot tandem reactions toward the synthesis of indoles using o-iodoanilines, acyl chlorides, and Wittig reagents. Tetrahedron Letters, 2015, 56, 2551-2554.	1.4	12
97	Synthesis of β-arylated alkylamides via Pd-catalyzed one-pot installation of a directing group and C(sp3)–H arylation. Beilstein Journal of Organic Chemistry, 2016, 12, 1122-1126.	2.2	12
98	KI as iodine source for the synthesis of E-iodovinyl sulfones via metal-free iodosulfonylation of terminal alkynes. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 1301-1304.	1.6	12
99	Step-Economical C–H Activation Reactions Directed by In Situ Amidation. Synthesis, 2020, 52, 3211-3218.	2.3	12
100	Copper-catalyzed three-component reactions of phenols, acyl chlorides and Wittig reagents for the synthesis of β-aryloxyl acrylates. New Journal of Chemistry, 2015, 39, 1567-1569.	2.8	11
101	Copperâ€Catalyzed Hydrosulfonylation of Alkynes Employing Sulfonohydrazides toward the Synthesis of Vinyl Sulfones. Chinese Journal of Chemistry, 2016, 34, 1053-1057.	4.9	10
102	Transitionâ€Metalâ€free C5, C7â€Dihalogenation and the Switchable C5 Halogenation of 8â€Hydroxyquinolines. ChemistrySelect, 2019, 4, 693-697.	1.5	10
103	Transitionâ€Metalâ€Free Annulation of Enamines and Tosyl Azide toward Nâ€Heterocycle Fused and 5â€Aminoâ€1,2,3â€Triazoles. European Journal of Organic Chemistry, 2020, 2020, 5606-5609.	2.4	10
104	Recent Advances in Transition Metal-Free Halogenation of C(sp2)-H Bonds. Current Organic Chemistry, 2021, 25, 1180-1193.	1.6	10
105	Advances in the Synthesis of <i>N</i> -Sulfonyl Amidines. Chinese Journal of Organic Chemistry, 2020, 40, 1891.	1.3	10
106	Aerobic Construction of 2-Acyl Benzoxazole by Tandem C—H Oxygenation and Oxazole Ring Formation. Chinese Journal of Organic Chemistry, 2021, 41, 4780.	1.3	10
107	Oneâ€pot reactions for the synthesis of 5â€sulfonyl quinolines via domino <i>N</i> â€acylation and remote Câ€H sulfonylation. Heteroatom Chemistry, 2017, 28, .	0.7	9
108	Copper-catalyzed one-pot reactions of acetyl chloride, o-halobenzoic acids and Wittig reagents toward 3-methyl isocoumarin synthesis. RSC Advances, 2017, 7, 37839-37843.	3.6	9

· · ·		
- YI		
10	iniui	ง เม่น

#	Article	IF	CITATIONS
109	Metal-free three-component assemblies of anilines, α-keto acids and alkyl lactates for quinoline synthesis and their anti-inflammatory activity. Organic and Biomolecular Chemistry, 2022, 20, 4385-4390.	2.8	9
110	Dichloromethane as methylene donor for the one-pot synthesis of bisaryloxy methanes via Williamson etherification and Suzuki coupling. Tetrahedron Letters, 2016, 57, 5116-5119.	1.4	8
111	Concise synthesis of 3,4-dihydro-1,4-benzoxazines by three-component reactions of acyl chlorides, o-aminophenols and 1,2-dichloroethane. Tetrahedron, 2018, 74, 3691-3696.	1.9	8
112	Advances in the synthesis of α,αâ€difluoroâ€Î³â€lactams. Journal of Heterocyclic Chemistry, 2022, 59, 809-819.	2.6	8
113	Lactic acid-catalyzed fusion of ninhydrin and enamines for the solvent-free synthesis of hexahydroindeno[1,2- <i>b</i>]indole-9,10-diones. Heterocyclic Communications, 2016, 22, 161-163.	1.2	7
114	Direct Synthesis of Methyleneâ€Bridged Bisâ€biaryl Carboxylates via Cascade Suzuki Coupling and CH ₂ Cl ₂ â€Based Bisâ€esterification. ChemistrySelect, 2018, 3, 8291-8293.	1.5	7
115	Aqueous Synthesis of 3,4â€Dihydropyridinones from Acryloyl Chloride and Enaminones by Domino Amidation and Intramolecular Michael Addition. ChemistrySelect, 2019, 4, 10621-10623.	1.5	7
116	Annulation of Ketene Dithioacetals and Sulfonyl Hydrazines for the Synthesis of <i>N</i> â€Sulfonyl 5â€Alkylthiopyrazoles. ChemistrySelect, 2020, 5, 9431-9434.	1.5	7
117	Opinion Paper: Dichloromethane (CH2Cl2) as Methylene Donor in Organic Synthesis. Current Organic Chemistry, 2016, 20, 1656-1658.	1.6	7
118	Direct Threeâ€Component Synthesis of <i>α</i> â€Cyano Acrylates Involving Cascade Knoevenagel Reaction and Esterification. Chinese Journal of Chemistry, 2015, 33, 1194-1198.	4.9	6
119	Ethyl lactate mediated thioacetalization of aldehydes at ambient temperature. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1302-1305.	1.6	6
120	Copper-catalyzed synthesis of benzo[d][1,3]dioxin-4-ones via tandem Ar–halogen bond hydroxylation and dichloromethane-based double Williamson etherification. New Journal of Chemistry, 2017, 41, 4776-4778.	2.8	6
121	Metalâ€Free Selective C2â€H Amidation of 8â€Amidoquinolines by Using Isocyanide as the Source of Amide. ChemistrySelect, 2018, 3, 5194-5197.	1.5	6
122	Copper-Catalysed Selective 3-Sulfonylation of Indoles: A Mild Synthesis of Indolyl Sulfones. Journal of Chemical Research, 2016, 40, 579-582.	1.3	5
123	Microwaveâ€Assisted Decarbonylative Coupling Reaction of oâ€Halobenzamides for Phenanthridinone Synthesis. ChemistrySelect, 2018, 3, 7763-7765.	1.5	5
124	Nickel atalyzed Tandem Ring Contraction of TEMPO and Câ^'N Bond Transamination of Enaminones toward Amino Diversity of Enaminones. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
125	Synthesis of α-Hydroxyl Amides via Direct Amidation of Lactic Acid at Solvent- and Catalyst-Free Conditions. Journal of Chemical Research, 2015, 39, 274-276.	1.3	4
126	One-Pot and Multicomponent Synthesis of <i>N</i> -Substituted-4-hydroxyl-2-pyridones. Chinese Journal of Organic Chemistry, 2018, 38, 2054.	1.3	4

#	Article	IF	CITATIONS
127	A Clean Method for the Synthesis of 1,2-Disubstituted Benzimidazoles through a Redox Reaction of o-Phenylenediamine and Aldehydes. Journal of Chemical Research, 2012, 36, 61-62.	1.3	3
128	Three-component reactions of phosphorus ylides, thiophenols, and acetyl chloride for the synthesis of (β-thioacrylates). Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 926-929.	1.6	1