Jun-Liang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5054155/publications.pdf

Version: 2024-02-01

242 papers

10,586 citations

23567 58 h-index 51608 86 g-index

246 all docs 246 docs citations

times ranked

246

10995 citing authors

#	Article	IF	CITATIONS
1	Organic additives in all-inorganic perovskite solar cells and modules: from moisture endurance to enhanced efficiency and operational stability. Journal of Energy Chemistry, 2022, 67, 361-390.	12.9	21
2	Progress on growth of metal halide perovskites by vapor-phase synthesis and their applications. Journal Physics D: Applied Physics, 2022, 55, 073001.	2.8	10
3	Three-dimensional pyramidal CsPbBr3/C8BTBT film heterojunction photodetectors with high responsivity and long-term stability. Organic Electronics, 2022, 101, 106409.	2.6	9
4	Modulation of Vertical Component Distribution for Largeâ€Area Thickâ€Film Organic Solar Cells. Solar Rrl, 2022, 6, 2100838.	5.8	9
5	Sparkling hot spots in perovskite solar cells under reverse bias. ChemPhysMater, 2022, 1, 71-76.	2.8	7
6	Engineering of the alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. Journal of Materials Chemistry A, 2022, 10, 3314-3320.	10.3	17
7	A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. Nanoscale, 2022, 14, 2316-2326.	5.6	52
8	High-performance CdS@CsPbBr ₃ core–shell microwire heterostructure photodetector. Journal Physics D: Applied Physics, 2022, 55, 194002.	2.8	6
9	Structures, Properties, and Device Applications for [1]Benzothieno[3,2â€b]Benzothiophene Derivatives. Advanced Functional Materials, 2022, 32, .	14.9	26
10	Fully Roll-to-Roll Processed Efficient Perovskite Solar Cells via Precise Control on the Morphology of PbI2:CsI Layer. Nano-Micro Letters, 2022, 14, 79.	27.0	21
11	Artificial Vision Adaption Mimicked by an Optoelectrical In ₂ O ₃ Transistor Array. Nano Letters, 2022, 22, 3372-3379.	9.1	56
12	Bionic Scarfskin-Inspired Hierarchy Configuration toward Tunable Microwave-Absorbing Performance. ACS Applied Materials & Interfaces, 2022, , .	8.0	4
13	Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.	17.4	54
14	Recent advances in printed liquid metals for wearable healthcare sensors: a review. Journal Physics D: Applied Physics, 2022, 55, 283002.	2.8	11
15	Recent progresses of organic photonic synaptic transistors. Flexible and Printed Electronics, 2022, 7, 024002.	2.7	2
16	Organic electrochemical transistors toward synaptic electronics. Journal Physics D: Applied Physics, 2022, 55, 304006.	2.8	10
17	A Rollingâ€Mode Al/CsPbBr ₃ Schottky Junction Directâ€Current Triboelectric Nanogenerator for Harvesting Mechanical and Solar Energy. Advanced Energy Materials, 2022, 12, .	19.5	35
18	Vertical Phase Separation Structure for Highâ€Performance Organic Thinâ€Film Transistors: Mechanism, Optimization Strategy, and Largeâ€Area Fabrication toward Flexible and Stretchable Electronics. Advanced Functional Materials, 2022, 32, .	14.9	29

#	Article	IF	Citations
19	Restricting the Formation of Pb–Pb Dimer via Surface Pb Site Passivation for Enhancing the Light Stability of Perovskite. Small, 2022, 18, e2201831.	10.0	15
20	Printable and Wearable Graphene-Based Strain Sensor With High Sensitivity for Human Motion Monitoring. IEEE Sensors Journal, 2022, 22, 13937-13944.	4.7	7
21	Printable ion-gel-gated In2O3 synaptic transistor array for neuro-inspired memory. Applied Physics Letters, 2022, 120, .	3.3	24
22	Recent advances in field-effect transistors for heavy metal ion detection. Journal of Materials Science: Materials in Electronics, 2022, 33, 15965-15991.	2,2	1
23	Effects of doping concentration and annealing temperatures on the ferroelectric memory properties of yttrium doped HfO ₂ . Journal Physics D: Applied Physics, 2022, 55, 394001.	2.8	3
24	First principles prediction of the carrier mobilities and optical properties of strained lead free perovskite Cs2SnX6(X=Cl, Br). Solid State Communications, 2022, 353, 114868.	1.9	0
25	A Highâ€Performance and Longâ€Term Airâ€Stable CH ₃ NH ₃ Pbl ₃ /C8BTBT Heterojunction Photodetector Fabricated via Chemical Vapor Deposition. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000479.	2.4	11
26	Revealing the microstructure evolution of inorganic CsPbI 2 Br perovskite via synchrotron radiation grazing incidence Xâ€ray diffraction. Nano Select, 2021, 2, 932-938.	3.7	5
27	6.2: <i>Invited Paper:</i> Wearable and Printable Sensors for Human Healthcare Monitoring. Digest of Technical Papers SID International Symposium, 2021, 52, 39-39.	0.3	O
28	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	2.8	158
29	Photoelectric Visual Adaptation Based on ODâ€CsPbBr ₃ â€Quantumâ€Dots/2Dâ€MoS ₂ Mixedâ€Dimensional Heterojunction Transistor. Advanced Functional Materials, 2021, 31, 2010655.	14.9	93
30	Angular dependent magnetoresistance in organic spin valves. Results in Physics, 2021, 22, 103963.	4.1	5
31	Non-Volatile In-Ga-Zn-O Transistors for Neuromorphic Computing. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	6
32	Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Research, 2021, 14, 2875-2883.	10.4	114
33	Creating a Dualâ€Functional 2D Perovskite Layer at the Interface to Enhance the Performance of Flexible Perovskite Solar Cells. Small, 2021, 17, e2102368.	10.0	44
34	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	1.8	49
35	Field-driven modulating of In-Sn-O synaptic transistors with a precisely controlled weight update. Applied Materials Today, 2021, 23, 101024.	4.3	5
36	Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Research, 2021, 14, 4236-4242.	10.4	28

#	Article	IF	CITATIONS
37	Can Vacuum Deposition Apply to Bismuth-Doped \hat{l}^3 -CsPbl ₃ Perovskite? Revealing the Role of Bi ³⁺ in the Formation of Black Phase. Journal of Physical Chemistry Letters, 2021, 12, 6927-6933.	4.6	5
38	Recent Advances in Flexible Organic Synaptic Transistors. Advanced Electronic Materials, 2021, 7, 2100336.	5.1	43
39	Interfacial modification for high performance photodetector based on perovskite., 2021,,.		0
40	Serpentine CoxNi3-xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Applied Catalysis B: Environmental, 2020, 260, 118184.	20.2	28
41	The influence of electrode for electroluminescence devices based on all-inorganic halide perovskite CsPbBr ₃ . Journal of Physics Condensed Matter, 2020, 32, 065002.	1.8	21
42	Flexible Planar Heterojunction Perovskite Solar Cells Fabricated via Sequential Rollâ€toâ€Roll Microgravure Printing and Slotâ€Die Coating Deposition. Solar Rrl, 2020, 4, 1900204.	5.8	47
43	Resistance change of stretchable composites based on inkjet-printed silver nanowires. Journal Physics D: Applied Physics, 2020, 53, 05LT02.	2.8	19
44	The energy band engineering for the high-performance infrared photodetectors constructed by CdTe/MoS ₂ heterojunction. Journal of Physics Condensed Matter, 2020, 32, 065004.	1.8	20
45	Recent progress towards roll-to-roll manufacturing of perovskite solar cells using slot-die processing. Flexible and Printed Electronics, 2020, 5, 014006.	2.7	37
46	Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. Journal Physics D: Applied Physics, 2020, 53, 125402.	2.8	58
47	Side-chain optimization of perylene diimide-thiophene random terpolymer acceptors for enhancing the photovoltaic efficiency of all-polymer solar cells. Organic Electronics, 2020, 78, 105616.	2.6	9
48	A Subâ€10 nm Vertical Organic/Inorganic Hybrid Transistor for Painâ€Perceptual and Sensitizationâ€Regulated Nociceptor Emulation. Advanced Materials, 2020, 32, e1906171.	21.0	135
49	Band alignment engineering: ultrabroadband photodetection with SnX ₂ (X  =  S, S heterostructures. Journal of Physics Condensed Matter, 2020, 32, 115703.	e)/ZnS 1.8	15
50	A 2.16ÂeV bandgap polymer donor gives 16% power conversion efficiency. Science Bulletin, 2020, 65, 179-181.	9.0	75
51	Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition. Applied Physics Letters, 2020, 117, 133301.	3.3	11
52	The effect of air exposure on device performance of flexible C8-BTBT organic thin-film transistors with hygroscopic insulators. Science China Materials, 2020, 63, 2551-2559.	6.3	6
53	Vertical 0Dâ€Perovskite/2Dâ€MoS ₂ van der Waals Heterojunction Phototransistor for Emulating Photoelectricâ€Synergistically Classical Pavlovian Conditioning and Neural Coding Dynamics. Small, 2020, 16, e2005217.	10.0	87
54	Two-Step Processed Efficient Potassium and Cesium-Alloyed Quaternary Cations Perovskite Solar Cells. Synthetic Metals, 2020, 269, 116564.	3.9	6

#	Article	IF	Citations
55	Exploring the Coexistence Mechanism of CsPb ₂ Br ₅ and CsPbBr ₃ Based on the Competitive Phase Diagram. Journal of Physical Chemistry C, 2020, 124, 23052-23058.	3.1	35
56	Improving Stability of Lead Halide Perovskite via PbF ₂ Layer Covering. Journal of Physical Chemistry Letters, 2020, 11, 6266-6272.	4.6	13
57	Î ³ -ray Radiation on Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 7318-7324.	5.1	27
58	Neuromorphic Photoelectric Devices: Vertical ODâ€Perovskite/2Dâ€MoS ₂ van der Waals Heterojunction Phototransistor for Emulating Photoelectricâ€Synergistically Classical Pavlovian Conditioning and Neural Coding Dynamics (Small 45/2020). Small, 2020, 16, 2070244.	10.0	2
59	Optoelectronic Inâ€Gaâ€Znâ€O Memtransistors for Artificial Vision System. Advanced Functional Materials, 2020, 30, 2002325.	14.9	57
60	Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical OD-perovskite/2D-MoS ₂ hybrid-dimensional van der Waals heterostructure. Nanoscale, 2020, 12, 21798-21811.	5 . 6	51
61	Dual Cross-Linked Ion-Based Temperature-Responsive Conductive Hydrogels with Multiple Sensors and Steady Electrocardiogram Monitoring. Chemistry of Materials, 2020, 32, 7670-7678.	6.7	54
62	Polymer-Decorated 2D MoS ₂ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation*. Chinese Physics Letters, 2020, 37, 088501.	3. 3	30
63	Decreasing energy loss and optimizing band alignment for high performance CsPbI ₃ solar cells through guanidine hydrobromide post-treatment. Journal of Materials Chemistry A, 2020, 8, 10346-10353.	10.3	40
64	High-performance and flexible CsPbBr ₃ UV–vis photodetectors fabricated via chemical vapor deposition. Journal Physics D: Applied Physics, 2020, 53, 354002.	2.8	11
65	Recent progresses on SnO ₂ anode materials for sodium storage. Journal Physics D: Applied Physics, 2020, 53, 353001.	2.8	18
66	Efficient and stable perovskite–silicon two-terminal tandem solar cells. Rare Metals, 2020, 39, 745-747.	7.1	25
67	Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials. Journal of Central South University, 2020, 27, 1235-1246.	3.0	18
68	Solution-processed perovskite solar cells. Journal of Central South University, 2020, 27, 1104-1133.	3.0	34
69	Multi-gate-driven In-Ga-Zn-O memtransistors with a Sub-60 mV/decade subthreshold swing for neuromorphic and memlogic applications. Organic Electronics, 2020, 84, 105810.	2.6	13
	High-performance Photodetector Based on <mml:math <="" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td>, ,</td></mml:math>		, ,

xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"

70 overflow="scroll"><mml:mrow><mml:mi>In</mml:mi><mml:mi>Se</mml:mi></mml:mrow><mml:mo>/</mml:mo>/<mml:mo><mml:mi>Cl</mml:mi>

#	Article	IF	CITATIONS
73	Theoretical study on the effect of the optical properties and electronic structure for the Bi-doped CsPbBr ₃ . Journal of Physics Condensed Matter, 2020, 32, 205504.	1.8	27
74	A Facile Airâ€Retreatment Strategy for Efficient Inverted Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000069.	2.4	4
75	Fully doctor-bladed efficient organic solar cells processed under ambient condition. Organic Electronics, 2020, 82, 105725.	2.6	15
76	Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over $18 \text{\^A} \text{cm} 2 / (\text{V s})$. Science Bulletin, 2020, 65, 791-795.	9.0	27
77	Large-area perovskite solar cells. Science Bulletin, 2020, 65, 872-875.	9.0	34
78	Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in Pbl ₂ precursor*. Chinese Physics B, 2020, 29, 048801.	1.4	12
79	Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering. Organic Electronics, 2020, 83, 105736.	2.6	18
80	Effects of Components Modulation on the Type of Band Alignments for PbI 2 /WS 2 van der Waals Heterostructure. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000016.	2.4	23
81	Theoretical prediction of double perovskite Cs ₂ Ag _x Cu _{1-x} In _y Tb _{1-y} Cl ₆ for infrared detection. Journal Physics D: Applied Physics, 2020, 53, 265302.	2.8	29
82	Large-scale Roll-to-Roll Micro-gravure Printed Flexible PBDB-T/IT-M Bulk Heterojunction Photodetectors. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	7
83	Fully slot-die-coated perovskite solar cells in ambient condition. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	24
84	Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Science China Chemistry, 2020, 63, 1159-1168.	8.2	92
85	Interfacial electronic properties of 2D/3D (PtSe ₂ /CsPbX ₃) perovskite heterostructure. Journal of Physics Condensed Matter, 2020, 32, 445004.	1.8	4
86	Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. Journal Physics D: Applied Physics, 2019, 52, 455401.	2.8	59
87	Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1904020.	14.9	140
88	Facile precursor stoichiometry engineering for efficient inverted perovskite solar cells without any dopants. Organic Electronics, 2019, 75, 105396.	2.6	12
89	CsPb(I Br1â^')3 solar cells. Science Bulletin, 2019, 64, 1532-1539.	9.0	114
90	Rhenium Diselenide Anchored on Reduced Graphene Oxide as Anode with Cyclic Stability for Potassiumâ€lon Battery. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900329.	2.4	18

#	Article	IF	CITATIONS
91	The efficient and non-hysteresis inverted non-fullerenes/CH3NH3PbI3 planar solar cells. Solar Energy, 2019, 189, 307-313.	6.1	16
92	Broadband photodetectors based on topological insulator Bi2Se3 nanowire with enhanced performance by strain modulation effect. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113620.	2.7	8
93	Saturated antisolvent pressure induced perylene diimide nanowires with high degree of electron delocalization. Organic Electronics, 2019, 75, 105382.	2.6	1
94	Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems. Sensors, 2019, 19, 2916.	3.8	47
95	Highâ€Performance Flexible Perovskite Solar Cells via Precise Control of Electron Transport Layer. Advanced Energy Materials, 2019, 9, 1901419.	19.5	167
96	Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 2019, 66, 104095.	16.0	100
97	Highly Crystalline Near-Infrared Acceptor Enabling Simultaneous Efficiency and Photostability Boosting in High-Performance Ternary Organic Solar Cells. ACS Applied Materials & Enterfaces, 2019, 11, 48095-48102.	8.0	30
98	3D Printed Polyvinyl Alcohol Tablets with Multiple Release Profiles. Scientific Reports, 2019, 9, 12487.	3.3	38
99	Thin-film growth behavior of non-planar vanadium oxide phthalocyanine*. Chinese Physics B, 2019, 28, 088101.	1.4	8
100	Zn-Doped Cu(100) facet with efficient catalytic ability for the CO ₂ electroreduction to ethylene. Physical Chemistry Chemical Physics, 2019, 21, 21341-21348.	2.8	25
101	Deep-ultraviolet SnO2 nanowire phototransistors with an ultrahigh responsivity. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	12
102	Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	52
103	Roll-to-roll printed stable and thickness-independent ZnO:PEI composite electron transport layer for inverted organic solar cells. Solar Energy, 2019, 193, 102-110.	6.1	49
104	Near-infrared light-responsive hydrogels <i>via</i> peroxide-decorated MXene-initiated polymerization. Chemical Science, 2019, 10, 10765-10771.	7.4	70
105	2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale, 2019, 11, 1360-1369.	5.6	195
106	Proton–electron-coupled MoS ₂ synaptic transistors with a natural renewable biopolymer neurotransmitter for brain-inspired neuromorphic learning. Journal of Materials Chemistry C, 2019, 7, 682-691.	5.5	69
107	High-performance wide-bandgap copolymers with dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyridin-5(4 <i>H</i>)-one units. Materials Chemistry Frontiers, 2019, 3, 399-402.	5.9	18
108	Mesoporous Carbon oated Bismuth Nanorods as Anode for Potassiumâ€lon Batteries. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900209.	2.4	47

#	Article	IF	CITATIONS
109	First-principles investigations of electronic and optical properties in the MoS2/CsPbBr3 heterostructure. Journal of Physics and Chemistry of Solids, 2019, 135, 109060.	4.0	39
110	Transparent triboelectric sensor arrays using gravure printed silver nanowire electrodes. Applied Physics Express, 2019, 12, 066503.	2.4	20
111	Radiation tolerance of perovskite solar cells under gamma ray. Organic Electronics, 2019, 71, 79-84.	2.6	40
112	Interfacial charge behavior modulation in 2D/3D perovskite heterostructure for potential high-performance solar cells. Nano Energy, 2019, 59, 715-720.	16.0	108
113	Piezo-phototronic enhanced photoresponsivity based on single CdTe nanowire photodetector. Journal of Applied Physics, 2019, 125, .	2.5	8
114	Fully-printed, flexible cesium-doped triple cation perovskite photodetector. Applied Materials Today, 2019, 15, 389-397.	4.3	41
115	Highly Efficient Perovskite Solar Cells Processed Under Ambient Conditions Using In Situ Substrateâ€Heatingâ€Assisted Deposition. Solar Rrl, 2019, 3, 1800318.	5.8	37
116	Sub-60 mV per decade switching in ion-gel-gated In–Sn–O transistors with a nano-thick charge trapping layer. Nanoscale, 2019, 11, 21740-21747.	5.6	21
117	A wide-bandgap copolymer donor based on a phenanthridin-6($5H)$ -one unit. Materials Chemistry Frontiers, 2019, 3, 2686-2689.	5.9	6
118	Roll-to-roll micro-gravure printed P3HT:PCBM organic solar cells. Flexible and Printed Electronics, 2019, 4, 044007.	2.7	9
119	Interfacial electronic structures of MoOx/mixed perovskite photodetector. Organic Electronics, 2019, 65, 162-169.	2.6	30
120	High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing. Journal Physics D: Applied Physics, 2019, 52, 115501.	2.8	17
121	Carbon–Oxygenâ€Bridged Ladderâ€Type Building Blocks for Highly Efficient Nonfullerene Acceptors. Advanced Materials, 2019, 31, e1804790.	21.0	139
122	All-inorganic perovskite CsPbBr ₃ microstructures growth <i>via</i> chemical vapor deposition for high-performance photodetectors. Nanoscale, 2019, 11, 21386-21393.	5.6	51
123	Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector. Npj Flexible Electronics, 2018, 2, .	10.7	54
124	Printed Thin-Film Transistors: Research from China. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 25902-25924.	8.0	65
125	Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition. Organic Electronics, 2018, 58, 153-158.	2.6	69
126	Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA) ₂ Pbl ₄ . Nanoscale, 2018, 10, 8677-8688.	5.6	169

#	Article	IF	Citations
127	Efficient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity. Organic Electronics, 2018, 55, 140-145.	2.6	39
128	Interface engineering of CsPbI3-black phosphorus van der Waals heterostructure. Applied Physics Letters, 2018, 112, .	3.3	67
129	Influence of the number of layers on ultrathin CsSnI ₃ perovskite: from electronic structure to carrier mobility. Journal Physics D: Applied Physics, 2018, 51, 105101.	2.8	35
130	Lowâ€Temperature Processed, Efficient, and Highly Reproducible Cesiumâ€Doped Triple Cation Perovskite Planar Heterojunction Solar Cells. Solar Rrl, 2018, 2, 1700209.	5.8	113
131	Simultaneouly enhanced durability and performance by employing dopamine copolymerized PEDOT with high work function and water-proofness for inverted perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 2311-2318.	5.5	28
132	Enhancing the performance of planar heterojunction perovskite solar cells using stable semiquinone and amine radical modified hole transport layer. Journal of Power Sources, 2018, 390, 134-141.	7.8	25
133	Benefits of fullerene/SnO 2 bilayers as electron transport layer for efficient planar perovskite solar cells. Organic Electronics, 2018, 58, 294-300.	2.6	26
134	Fast-response and high-responsivity FA MA(1â^²)Pbl3 photodetectors fabricated via doctor-blading deposition in ambient condition. Organic Electronics, 2018, 52, 190-194.	2.6	23
135	Energy level and thickness control on PEDOT:PSS layer for efficient planar heterojunction perovskite cells. Journal Physics D: Applied Physics, 2018, 51, 025110.	2.8	15
136	Functionalized Graphene Oxide Enables a High-Performance Bulk Heterojunction Organic Solar Cell with a Thick Active Layer. Journal of Physical Chemistry Letters, 2018, 9, 6238-6248.	4.6	34
137	Synthesis and properties of tetracyanoquinodimethane derivatives. Heterocyclic Communications, 2018, 24, 249-254.	1.2	4
138	Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	24
139	Highly Efficient, Solution-Processed CsPbl ₂ Br Planar Heterojunction Perovskite Solar Cells via Flash Annealing. ACS Photonics, 2018, 5, 4104-4110.	6.6	64
140	Enhancing light harvesting and charge transport in organic solar cells via integrating lanthanide-doped upconversation materials. Journal Physics D: Applied Physics, 2018, 51, 265105.	2.8	8
141	(C ₆ H ₅ CH ₂ NH ₃) ₂ CuBr ₄ : A Lead-Free, Highly Stable Two-Dimensional Perovskite for Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 2709-2716.	5.1	73
142	Interfacial Electronic Structures of Photodetectors Based on C8BTBT/Perovskite. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20959-20967.	8.0	13
143	Unveiling the important role of non-fullerene acceptors crystallinity on optimizing nanomorphology and charge transfer in ternary organic solar cells. Organic Electronics, 2018, 62, 643-652.	2.6	10
144	Coplanar Multigate MoS ₂ Electric-Double-Layer Transistors for Neuromorphic Visual Recognition. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25943-25948.	8.0	99

#	Article	IF	Citations
145	Transient security transistors self-supported on biodegradable natural-polymer membranes for brain-inspired neuromorphic applications. Nanoscale, 2018, 10, 14893-14901.	5.6	90
146	Ferroelectric Polarization in CsPbl ₃ /CsSnl ₃ Perovskite Heterostructure. Journal of Physical Chemistry C, 2018, 122, 17820-17824.	3.1	11
147	Two-Dimensional van der Waals Heterostructures Constructed via Perovskite (C ₄ H ₉ NH ₃) ₂ XBr ₄ and Black Phosphorus. Journal of Physical Chemistry Letters, 2018, 9, 4822-4827.	4.6	50
148	Silane-Capped ZnO Nanoparticles for Use as the Electron Transport Layer in Inverted Organic Solar Cells. ACS Nano, 2018, 12, 5518-5529.	14.6	101
149	Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction. Applied Physics Letters, 2018, 112, .	3.3	84
150	Mechanism of rubrene thin film growth using \hat{l}_{\pm} -quaterthiophene inducing layer at low temperature. Thin Solid Films, 2017, 621, 131-136.	1.8	3
151	Stable monolithic hole-conductor-free perovskite solar cells using TiO 2 nanoparticle binding carbon films. Organic Electronics, 2017, 45, 131-138.	2.6	49
152	Air-Induced High-Quality CH ₃ NH ₃ Pbl ₃ Thin Film for Efficient Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 6575-6580.	3.1	47
153	Light-Induced Degradation of CH ₃ NH ₃ Pbl ₃ Hybrid Perovskite Thin Film. Journal of Physical Chemistry C, 2017, 121, 3904-3910.	3.1	265
154	Organic Phototransistors: Highâ€Performance Organic Heterojunction Phototransistors Based on Highly Ordered Copper Phthalocyanine/ <i>para</i> àâ€Sexiphenyl Thin Films (Adv. Funct. Mater. 6/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
155	Spatially-correlated neuron transistors with ion-gel gating for brain-inspired applications. Organic Electronics, 2017, 44, 25-31.	2.6	38
156	Multi-gate organic neuron transistors for spatiotemporal information processing. Applied Physics Letters, 2017, 110, .	3.3	117
157	Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors. Organic Electronics, 2017, 47, 126-132.	2.6	70
158	High-performance formamidinium-based perovskite photodetectors fabricated via doctor-blading deposition in ambient condition. Organic Electronics, 2017, 47, 102-107.	2.6	34
159	Highâ€Performance Broadband Perovskite Photodetectors Based on CH ₃ NH ₃ Pbl ₃ /C8BTBT Heterojunction. Advanced Electronic Materials, 2017, 3, 1700058.	5.1	101
160	Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	11
161	2D MoS ₂ Neuromorphic Devices for Brainâ€Like Computational Systems. Small, 2017, 13, 1700933.	10.0	268
162	Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles. Chinese Physics B, 2017, 26, 058401.	1.4	15

#	Article	IF	Citations
163	High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	29
164	Degradation behavior of planar heterojunction CH 3 NH 3 PbI 3 perovskite solar cells. Synthetic Metals, 2017, 227, 43-51.	3.9	31
165	Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells. Organic Electronics, 2017, 45, 190-197.	2.6	87
166	Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition. Organic Electronics, 2017, 45, 302-307.	2.6	90
167	Highâ€Performance Organic Heterojunction Phototransistors Based on Highly Ordered Copper Phthalocyanine/ <i>para</i> à€Sexiphenyl Thin Films. Advanced Functional Materials, 2017, 27, 1604933.	14.9	64
168	Efficient and stable inverted polymer solar cells prepared via air exposure. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600580.	1.8	0
169	Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vapor–Solution Method. Advanced Materials, 2017, 29, 1703256.	21.0	121
170	Irreversible light-soaking effect of perovskite solar cells caused by light-induced oxygen vacancies in titanium oxide. Applied Physics Letters, $2017,111,$	3.3	56
171	Polymer–electrolyte-gated nanowire synaptic transistors for neuromorphic applications. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	27
172	Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-Tunable Ternary CdS _{<i>x</i>} Se _{1â€"<i>x</i>} Nanowires. ACS Photonics, 2017, 4, 2495-2503.	6.6	48
173	Multilevel Nonvolatile Organic Photomemory Based on Vanadyl-Phthalocyanine/ <i>para</i>	6.6	68
174	Improved efficiency and shortâ€term stability of the planar heterojunction perovskite solar cells with a polyelectrolyte layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700281.	1.8	3
175	Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. Journal Physics D: Applied Physics, 2017, 50, 375101.	2.8	25
176	Improvement of CH 3 NH 3 PbI 3 thin film using the additive 1,8-diiodooctane for planar heterojunction perovskite cells. Physica B: Condensed Matter, 2017, 522, 43-47.	2.7	10
177	Rheological behavior of Al2O3 suspensions containing polyelectrolyte complexes for direct ink writing. Powder Technology, 2017, 320, 223-229.	4.2	42
178	High-performance and flexible photodetectors based on P3HT/CdS/CdS:SnS2 superlattice nanowires hybrid films. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	17
179	Large-area and high-performance CH3NH3Pbi3 perovskite photodetectors fabricated via doctor blading in ambient condition. Organic Electronics, 2017, 49, 347-354.	2.6	70
180	The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectric layer for pressure sensors. Applied Physics Letters, 2017, 110 , .	3.3	59

#	Article	IF	CITATIONS
181	High-performance ultraviolet photodetectors based on CdS/CdS:SnS ₂ superlattice nanowires. Nanoscale, 2016, 8, 14580-14586.	5 . 6	54
182	lodine and Chlorine Element Evolution in CH ₃ Cl _{<i>x</i>} NH ₃ Pbl _{3â€"<i>x</i>} Cl _{<i>x</i>} Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 2742-2749.	6.7	48
183	Chitosan-gated low-voltage transparent indium-free aluminum-doped zinc oxide thin-film transistors. Organic Electronics, 2016, 33, 311-315.	2.6	37
184	Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 26169-26175.	8.0	138
185	Solution-processed natural gelatin was used as a gate dielectric for the fabrication of oxide field-effect transistors. Organic Electronics, 2016, 38, 357-361.	2.6	42
186	Bio-inspired coplanar-gate-coupled ITO-free oxide-based transistors employing natural nontoxic bio-polymer electrolyte. Organic Electronics, 2016, 37, 474-478.	2.6	16
187	Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	9
188	Interface modification for organic and perovskite solar cells. Science China Materials, 2016, 59, 743-756.	6.3	23
189	Modification of Ultrathin NPB Interlayer on the Electronic Structures of the CH ₃ NH ₃ Pbl ₃ /NPB/MoO ₃ Interface. Journal of Physical Chemistry C, 2016, 120, 17863-17871.	3.1	32
190	lon-gel gated field-effect transistors with solution-processed oxide semiconductors for bioinspired artificial synapses. Organic Electronics, 2016, 39, 64-70.	2.6	62
191	Largely-increased length of silver nanowires by controlled oxidative etching process es in solvothermal reaction and the application in highly transparent and conductive networks. RSC Advances, 2016, 6, 105895-105902.	3.6	12
192	High-quality CH3NH3PbI3 thin film fabricated via intramolecular exchange for efficient planar heterojunction perovskite solar cells. Organic Electronics, 2016, 39, 304-310.	2.6	27
193	Artificial synapses based on biopolymer electrolyte-coupled SnO ₂ nanowire transistors. Journal of Materials Chemistry C, 2016, 4, 11110-11117.	5 . 5	52
194	Controllable thin-film morphology and structure for 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8BTBT) based organic field-effect transistors. Organic Electronics, 2016, 36, 73-81.	2.6	55
195	Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016, 8, 5350-5357.	5 . 6	213
196	Low contact resistance in solid electrolyte-gated ZnO field-effect transistors with ferromagnetic contacts. Journal of Materials Chemistry C, 2016, 4, 150-156.	5 . 5	6
197	Prominent Efficiency Enhancement in Perovskite Solar Cells Employing Silica-Coated Gold Nanorods. Journal of Physical Chemistry C, 2016, 120, 6996-7004.	3.1	87
198	Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300°C. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	21

#	Article	IF	Citations
199	Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer. Organic Electronics, 2016, 30, 30-35.	2.6	100
200	Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth. Scientific Reports, 2015, 5, 9441.	3.3	24
201	Efficient and non-hysteresis CH3NH3Pbl3/PCBM planar heterojunction solar cells. Organic Electronics, 2015, 24, 106-112.	2.6	94
202	Air-stable and high-performance organic field-effect transistors based on ordered, large-domain phthalocyanine copper thin film. Synthetic Metals, 2015, 210, 336-341.	3.9	34
203	Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer. Organic Electronics, 2015, 17, 253-261.	2.6	45
204	Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. RSC Advances, 2015, 5, 14567-14574.	3.6	49
205	Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. Organic Electronics, 2015, 26, 265-272.	2.6	83
206	Crystal-Domain Orientation and Boundary in Highly Ordered Organic Semiconductor Thin Film. Journal of Physical Chemistry C, 2015, 119, 14965-14971.	3.1	33
207	Controllable fabrication of copper phthalocyanine nanostructure crystals. Nanotechnology, 2015, 26, 225601.	2.6	17
208	Molecular Template Growth and Its Applications in Organic Electronics and Optoelectronics. Chemical Reviews, 2015, 115, 5570-5603.	47.7	198
209	Solution stability of active materials for organic photovoltaics. Solar Energy, 2015, 113, 181-188.	6.1	11
210	Degradation by Exposure of Coevaporated CH ₃ NH ₃ PbI ₃ Thin Films. Journal of Physical Chemistry C, 2015, 119, 23996-24002.	3.1	112
211	Dependence of device performance on the thickness of compact TiO2 layer in perovskite/TiO2 planar heterojunction solar cells. Journal of Renewable and Sustainable Energy, 2015, 7, 043105.	2.0	31
212	Investigation on thermal evaporated CH3NH3PbI3 thin films. AIP Advances, 2015, 5, .	1.3	42
213	Interface modification of polymer solar cells using graphene oxide and TiO ₂ NPs. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 585-590.	1.8	8
214	Interface modification of organic photovoltaics by combining molybdenum oxide (MoOx) and molecular template layer. Thin Solid Films, 2015, 574, 146-151.	1.8	13
215	Interface Modification for Organic Solar Cells. , 2015, , .		0
216	Random Copolymers Based on Thieno[3,4â€ <i>>c</i>)]pyrroleâ€4,6â€dione and Isoindigo Building Blocks for Polymer Solar Cells. Chinese Journal of Chemistry, 2014, 32, 521-526.	4.9	9

#	Article	IF	CITATIONS
217	Mobility enhancement of SnO ₂ nanowire transistors gated with a nanogranular SiO ₂ solid electrolyte. Physical Chemistry Chemical Physics, 2014, 16, 1084-1088.	2.8	10
218	Ordered Organic Nanostructures Fabricated from Anodic Alumina Oxide Templates for Organic Bulkâ€Heterojunction Photovoltaics. Macromolecular Chemistry and Physics, 2014, 215, 584-596.	2.2	18
219	A new two-dimensional donor/acceptor copolymer based on 4,8-bis(2′-ethylhexylthiophene)thieno[2,3-f]benzofuran for high-performance polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 5651.	5.5	38
220	Large-Scale Flexible and Highly Conductive Carbon Transparent Electrodes via Roll-to-Roll Process and Its High Performance Lab-Scale Indium Tin Oxide-Free Polymer Solar Cells. Chemistry of Materials, 2014, 26, 6293-6302.	6.7	83
221	Ion-dependent gate dielectric characteristics of ion-conducting SiO2 solid-electrolytes in oxide field-effect transistors. Physical Chemistry Chemical Physics, 2014, 16, 7455.	2.8	5
222	Organic field-effect transistor and its photoresponse using a benzo[1,2-b:4,5-b′]difuran-based donor–acceptor conjugated polymer. Organic Electronics, 2014, 15, 1050-1055.	2.6	88
223	Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer. Organic Electronics, 2014, 15, 835-843.	2.6	61
224	Efficient and stable inverted polymer solar cells using TiO2 nanoparticles and analysized by Mott-Schottky capacitance. Organic Electronics, 2014, 15, 1745-1752.	2.6	41
225	Organic photovoltaic modules fabricated by an industrial gravure printing proofer. Solar Energy Materials and Solar Cells, 2013, 109, 47-55.	6.2	103
226	Ordered nanocolumn-array organic semiconductor thin films with controllable molecular orientation. Applied Surface Science, 2013, 286, 104-108.	6.1	11
227	Molecular Template Growth and its Applications in Organic Optoelectronics. , 2013, , .		O
228	Weak Epitaxy Growth of Phthalocyanine on 2,5-Bis(4-1, $1\hat{a}\in^2$: $4\hat{a}\in^2$, $1\hat{a}\in^2\hat{a}\in^2$ -terphenyl)-thiophene and the Effect of State of Inducing Layer. Journal of Physical Chemistry B, 2010, 114, 16408-16413.	f Phase 2.6	8
229	Weak Epitaxy Growth of Copper Hexadecafluorophthalocyanine (F ₁₆ CuPc) on <i>p</i> -Sexiphenyl Monolayer Film. Journal of Physical Chemistry B, 2009, 113, 2333-2337.	2.6	22
230	Weak epitaxy growth of organic semiconductor thin films. Chemical Society Reviews, 2009, 38, 2634.	38.1	152
231	Phthalocyanato Tin(IV) Dichloride: An Airâ€Stable, Highâ€Performance, nâ€Type Organic Semiconductor with a High Fieldâ€Effect Electron Mobility. Advanced Materials, 2008, 20, 2142-2144.	21.0	87
232	Ultrathin-Film Growth of <i>para</i> -Sexiphenyl (I): Submonolayer Thin-Film Growth as a Function of the Substrate Temperature. Journal of Physical Chemistry B, 2008, 112, 7816-7820.	2.6	52
233	Weak Epitaxy Growth of Metal-Free Phthalocyanine on <i>pi>-</i> Sexiphenyl Monolayer and Double-Layer Films. Journal of Physical Chemistry B, 2008, 112, 3132-3137.	2.6	38
234	Ultrathin-Film Growth of <i>para</i> -Sexiphenyl (II): Formation of Large-Size Domain and Continuous Thin Film. Journal of Physical Chemistry B, 2008, 112, 7821-7825.	2.6	47

#	Article	IF	CITATIONS
235	Weak Epitaxy Growth and Phase Behavior of Planar Phthalocyanines on <i>p</i> -Sexiphenyl Monolayer Film. Journal of Physical Chemistry B, 2008, 112, 6786-6792.	2.6	20
236	High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors. Applied Physics Letters, 2007, 90, 253510.	3.3	109
237	Single Crystals of the Poly(I-lactide) Block and the Poly(ethylene glycol) Block in Poly(I-lactide)â^'poly(ethylene glycol) Diblock Copolymer. Macromolecules, 2007, 40, 2791-2797.	4.8	56
238	Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)–poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3215-3226.	2.1	58
239	Partial delamination of the organo-montmorillonite with surfactant containing hydroxyl groups in maleated poly(propylene carbonate). Polymer, 2006, 47, 8548-8555.	3.8	54
240	Isothermal Crystallization Behavior of the Poly(L-lactide) Block in Poly(L-lactide)-Poly(ethylene) Tj ETQq0 0 0 rgBT / 38, 1251-1257.	Overlock 2.7	10 Tf 50 54 24
241	Phase transition behavior and structure of the thermotropic liquid crystal $6-\{[(4\hat{a}\in^2-\{[(undecyl)carbonyl]oxy\}biphenyl-4yl)carbonyl]oxy\}-1-hexyne.$ Crystal Research and Technology, 2006, 41, 914-918.	1.3	3
242	Interface Control and Printing Fabrication for Highly Efficient Flexible Perovskite Solar Cells., 0,,.		0