Linas Mazutis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5053980/publications.pdf Version: 2024-02-01

Ι ίνας Μαζιιτις

#	Article	IF	CITATIONS
1	Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell, 2015, 161, 1187-1201.	13.5	2,857
2	Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell, 2018, 174, 1293-1308.e36.	13.5	1,361
3	Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell, 2018, 174, 716-729.e27.	13.5	1,197
4	Single-cell analysis and sorting using droplet-based microfluidics. Nature Protocols, 2013, 8, 870-891.	5.5	1,146
5	Single-cell barcoding and sequencing using droplet microfluidics. Nature Protocols, 2017, 12, 44-73.	5.5	589
6	Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab on A Chip, 2011, 11, 2156.	3.1	461
7	Characterization of cell fate probabilities in single-cell data with Palantir. Nature Biotechnology, 2019, 37, 451-460.	9.4	393
8	Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell, 2019, 179, 846-863.e24.	13.5	359
9	The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell, 2020, 181, 236-249.	13.5	334
10	Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature, 2020, 577, 421-425.	13.7	321
11	Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nature Medicine, 2020, 26, 259-269.	15.2	274
12	Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis. Analytical Chemistry, 2009, 81, 4813-4821.	3.2	235
13	Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell, 2020, 38, 229-246.e13.	7.7	210
14	Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab on A Chip, 2009, 9, 2902.	3.1	182
15	Platelet bioreactor-on-a-chip. Blood, 2014, 124, 1857-1867.	0.6	177
16	Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science, 2020, 368, 497-505.	6.0	165
17	Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell, 2021, 39, 1479-1496.e18.	7.7	155
18	Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science, 2020, 369, 276-282.	6.0	146

Linas Mazutis

#	Article	IF	CITATIONS
19	A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab on A Chip, 2009, 9, 2665.	3.1	134
20	Dynamics of molecular transport by surfactants in emulsions. Soft Matter, 2012, 8, 10618.	1.2	133
21	A gene–environment-induced epigenetic program initiates tumorigenesis. Nature, 2021, 590, 642-648.	13.7	133
22	Selective droplet coalescence using microfluidic systems. Lab on A Chip, 2012, 12, 1800.	3.1	124
23	Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nature Neuroscience, 2021, 24, 343-354.	7.1	118
24	Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood, 2015, 125, 860-868.	0.6	87
25	Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. Lab on A Chip, 2016, 16, 65-69.	3.1	74
26	Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release. Macromolecular Bioscience, 2015, 15, 1641-1646.	2.1	72
27	Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 14822-14832.	4.0	66
28	A unified atlas of CD8 TÂcell dysfunctional states in cancer and infection. Molecular Cell, 2021, 81, 2477-2493.e10.	4.5	57
29	AD-linked R47H- <i>TREM2</i> mutation induces disease-enhancing microglial states via AKT hyperactivation. Science Translational Medicine, 2021, 13, eabe3947.	5.8	55
30	Natural Genetic Variation Reveals Key Features of Epigenetic and Transcriptional Memory in Virus-Specific CD8ÂT Cells. Immunity, 2019, 50, 1202-1217.e7.	6.6	51
31	CD49b defines functionally mature Treg cells that survey skin and vascular tissues. Journal of Experimental Medicine, 2018, 215, 2796-2814.	4.2	37
32	A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. ELife, 2019, 8, .	2.8	32
33	Preparation of monodisperse emulsions by hydrodynamic size fractionation. Applied Physics Letters, 2009, 95, .	1.5	31
34	Rapid isolation of antigen-specific B-cells using droplet microfluidics. RSC Advances, 2020, 10, 27006-27013.	1.7	30
35	Single-Cell Transcriptional Profiling Reveals Signatures of Helper, Effector, and Regulatory MAIT Cells during Homeostasis and Activation. Journal of Immunology, 2022, 208, 1042-1056.	0.4	26
36	Multi-omics at single-cell resolution: comparison of experimental and data fusion approaches. Current Opinion in Biotechnology, 2019, 55, 159-166.	3.3	25

Linas Mazutis

#	Article	IF	CITATIONS
37	DNA Nanoparticles for Improved Protein Synthesis In Vitro. Angewandte Chemie - International Edition, 2016, 55, 3120-3123.	7.2	19
38	Multi-step processing of single cells using semi-permeable capsules. Lab on A Chip, 2020, 20, 4052-4062.	3.1	18
39	Statistical Mechanics of Allosteric Enzymes. Journal of Physical Chemistry B, 2016, 120, 6021-6037.	1.2	15
40	High-throughput single-cell antibody secretion quantification and enrichment using droplet microfluidics-based FRET assay. IScience, 2022, 25, 104515.	1.9	14
41	Droplet Microfluidics Approach for Single-DNA Molecule Amplification and Condensation into DNA-Magnesium-Pyrophosphate Particles. Micromachines, 2017, 8, 62.	1.4	12
42	Molecular Fingerprint and Developmental Regulation of the Tegmental GABAergic and Glutamatergic Neurons Derived from the Anterior Hindbrain. Cell Reports, 2020, 33, 108268.	2.9	11
43	Tumor progression effects on drug vector access to tumor-associated capillary bed. Journal of Controlled Release, 2017, 261, 216-222.	4.8	11
44	Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. SSRN Electronic Journal, 0, ,	0.4	11
45	DNA Nanoparticles for Improved Protein Synthesis In Vitro. Angewandte Chemie, 2016, 128, 3172-3175.	1.6	8
46	Quantitative biology: where modern biology meets physical sciences. Molecular Biology of the Cell, 2014, 25, 3482-3485.	0.9	6
47	Microfluidics for Cancer Biomarker Discovery, Research, and Clinical Application. Advances in Experimental Medicine and Biology, 2022, , 499-524.	0.8	5
48	Inhibition of Carbonic Anhydrase IX Suppresses Breast Cancer Cell Motility at the Single-Cell Level. International Journal of Molecular Sciences, 2021, 22, 11571.	1.8	4
49	Single-cell screening using microfluidic systems. , 2019, , 353-367.		2
50	Antibody discovery using microfluidic systems. , 2019, , 337-351.		2
51	Editorial overview: Current advances in analytical biotechnology: from single molecules to whole organisms. Current Opinion in Biotechnology, 2019, 55, iii-vi.	3.3	1
52	Comprehensive Single-Cell RNA-Sequencing Mapping of Primary Acute Myeloid Leukemias and Profiling of NPM1-Mutated Cells. Blood, 2018, 132, 995-995.	0.6	1
53	Abstract LB-A04: Rapid non-uniform adaptation to conformation-specific KRAS G12C inhibition. , 2019, , .		1
54	Abstract 622: Rapid non-uniform adaptation to conformation-specific KRAS G12Cinhibition. , 2020, , .		1

#	Article	IF	CITATIONS
55	Back Cover: Macromol. Biosci. 12/2015. Macromolecular Bioscience, 2015, 15, 1764-1764.	2.1	0

LINAS MAZUTIS

0

56 Abstract 5722: Acquired stemness by luminal cells. , 2020, , .