Daiki Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5053881/publications.pdf

Version: 2024-02-01

759233 794594 27 394 12 19 h-index citations g-index papers 27 27 27 344 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Design of Polymeric Biomaterials: The "Intermediate Water Concept― Bulletin of the Chemical Society of Japan, 2019, 92, 2043-2057.	3.2	65
2	Spreading and Structuring of Water on Superhydrophilic Polyelectrolyte Brush Surfaces. Langmuir, 2013, 29, 1148-1151.	3.5	36
3	Interfacial Structures and Fibrinogen Adsorption at Blood-Compatible Polymer/Water Interfaces. ACS Biomaterials Science and Engineering, 2016, 2, 2122-2126.	5.2	34
4	Analysis of Interaction Between Interfacial Structure and Fibrinogen at Blood-Compatible Polymer/Water Interface. Frontiers in Chemistry, 2018, 6, 542.	3.6	25
5	Measurement of the Electrostatic Interaction between Polyelectrolyte Brush Surfaces by Optical Tweezers. Langmuir, 2013, 29, 16093-16097.	3.5	24
6	Infrared Spectra and Hydrogen-Bond Configurations of Water Molecules at the Interface of Water-Insoluble Polymers under Humidified Conditions. Journal of Physical Chemistry B, 2022, 126, 4143-4151.	2.6	24
7	Thermosensitive Polymer Biocompatibility Based on Interfacial Structure at Biointerface. ACS Biomaterials Science and Engineering, 2018, 4, 1591-1597.	5.2	21
8	Effect of the Molecular Weight of Poly(2-methoxyethyl acrylate) on Interfacial Structure and Blood Compatibility. Langmuir, 2019, 35, 2808-2813.	3.5	20
9	Effect of Osmolytes on Water Mobility Correlates with Their Stabilizing Effect on Proteins. Journal of Physical Chemistry B, 2022, 126, 2466-2475.	2.6	19
10	Direct Characterization of In-Plane Phase Separation in Polystyrene Brush/Cyclohexane System. Macromolecules, 2016, 49, 4862-4866.	4.8	14
11	Hydration States and Blood Compatibility of Hydrogen-Bonded Supramolecular Poly(2-methoxyethyl) Tj ETQq1 I	1 0.7.8431	4 rgBT /Ove <mark>rlo</mark>
12	Control of interfacial structures and anti-platelet adhesion property of blood-compatible random copolymers. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 207-218.	3.5	13
13	Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers. ACS Biomaterials Science and Engineering, 2020, 6, 2855-2866.	5.2	12
14	Effect of interfacial structure based on grafting density of poly(2-methoxyethyl acrylate) on blood compatibility. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111517.	5.0	11
15	Experimental Evidence of Slow Mode Water in the Vicinity of Poly(ethylene oxide) at Physiological Temperature. Journal of Physical Chemistry B, 2022, 126, 1758-1767.	2.6	11
16	Protein- and Cell-Resistance of Zwitterionic Peptide-Based Self-Assembled Monolayers: Anti-Biofouling Tests and Surface Force Analysis. Frontiers in Chemistry, 2021, 9, 748017.	3.6	8
17	Attachment and Growth of Fibroblast Cells on Poly (2-Methoxyethyl Acrylate) Analog Polymers as Coating Materials. Coatings, 2021, 11, 461.	2.6	6
18	Hydration Mechanism in Blood-Compatible Polymers Undergoing Phase Separation. Langmuir, 2022, 38, 1090-1098.	3.5	6

#	Article	IF	CITATIONS
19	Nanometer-scale Real-space Observation and Material Processing for Polymer Materials under Atmospheric Pressure: Application of Atmospheric Scanning Electron Microscopy. Electrochemistry, 2014, 82, 359-363.	1.4	5
20	Local Dynamics of the Hydration Water and Poly(Methyl Methacrylate) Chains in PMMA Networks. Frontiers in Chemistry, 2021, 9, 728738.	3.6	5
21	Effect of amount of hydrated water and mobility of hydrated poly(<scp>2â€methoxyethyl</scp>) Tj ETQq1 1 0.7	84314 rgE	BT <u>f</u> Overlock
22	Observing the repulsion layers on blood-compatible polymer-grafted interfaces by frequency modulation atomic force microscopy. Materials Science and Engineering C, 2022, 133, 112596.	7.3	5
23	Nanoscopic analyses of cell-adhesive protein adsorption on poly(2-methoxyethyl acrylate) surfaces. Biomaterials Science, 2022, 10, 2953-2963.	5.4	4
24	Precise and nondestructive characterization of a †buried†nanostructure in a polymer thin film using synchrotron radiation ultra-small angle X-ray scattering. Polymer Journal, 2013, 45, 307-312.	2.7	3
25	First Observation of the Hydration Layer around Polymer Chain by Scattering and Its Relationship to Thromboresistance: Dilute Solution Properties of PMEA in THF/Water. Journal of Physical Chemistry B, 2021, 125, 7251-7261.	2.6	2
26	Effect of Branching Degree of Dendritic Polyglycerols on Plasma Protein Adsorption: Relationship between Hydration States and Surface Morphology. Langmuir, 2021, 37, 8534-8543.	3 . 5	2
27	Poly(2-Methoxyethyl Acrylate) (PMEA)-Coated Anti-Platelet Adhesive Surfaces to Mimic Native Blood Vessels through HUVECs Attachment, Migration, and Monolayer Formation. Coatings, 2022, 12, 869.	2.6	O