Galya Orr Orr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5053771/publications.pdf

Version: 2024-02-01

136950 128289 3,744 61 32 60 h-index citations g-index papers 62 62 62 6509 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Expression Patterns of Energy-Related Genes in Single Cells Uncover Key Isoforms and Enzymes That Gain Priority Under Nanoparticle-Induced Stress. ACS Nano, 2022, 16, 7197-7209.	14.6	3
2	Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20790-20801.	8.0	10
3	Unconventional aliphatic fluorophores discovered as the luminescence origin in citric acid–urea carbon dots. Nanoscale, 2022, 14, 9516-9525.	5 . 6	12
4	Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chemical Science, 2021, 12, 2441-2455.	7.4	82
5	Single Molecule–Based fliFISH Validates Radial and Heterogeneous Gene Expression Patterns in Pancreatic Islet β-Cells. Diabetes, 2021, 70, 1117-1122.	0.6	6
6	Redesign of hydrophobic quantum dots mitigates ligand-dependent toxicity in the nematode C. elegans. NanoImpact, 2021, 22, 100318.	4.5	1
7	Counting mRNA Copies in Intact Bacterial Cells by Fluctuation Localization Imaging-Based Fluorescence In Situ Hybridization (fliFISH). Methods in Molecular Biology, 2021, 2246, 237-247.	0.9	3
8	Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution. Environmental Science: Nano, 2020, 7, 149-161.	4.3	12
9	Colonies of the fungus Aspergillus niger are highly differentiated to adapt to local carbon source variation. Environmental Microbiology, 2020, 22, 1154-1166.	3 . 8	15
10	Subtoxic dose of lithium cobalt oxide nanosheets impacts critical molecular pathways in trout gill epithelial cells. Environmental Science: Nano, 2020, 7, 3419-3430.	4.3	4
11	Chemical plasticity in the fine root construct of <i>Quercus</i> spp. varies with root order and drought. New Phytologist, 2020, 228, 1835-1851.	7.3	20
12	Fluorescence in situ mRNA hybridization for gene expression detection in a wood decay fungus. International Biodeterioration and Biodegradation, 2019, 143, 104731.	3.9	2
13	The Long Noncoding RNA Paupar Modulates PAX6 Regulatory Activities to Promote Alpha Cell Development and Function. Cell Metabolism, 2019, 30, 1091-1106.e8.	16.2	45
14	Rosette core fungal resistance in Arabidopsis thaliana. Planta, 2019, 250, 1941-1953.	3 . 2	2
15	Quantitative Mapping of Oxidative Stress Response to Lithium Cobalt Oxide Nanoparticles in Single Cells Using Multiplexed <i>in Situ</i> Gene Expression Analysis. Nano Letters, 2019, 19, 1990-1997.	9.1	25
16	Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale, 2019, 11, 20411-20428.	5.6	96
17	Reference genes for accurate normalization of gene expression in wood-decomposing fungi. Fungal Genetics and Biology, 2019, 123, 33-40.	2.1	7
18	Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME Journal, 2018, 12, 1605-1618.	9.8	48

#	Article	IF	Citations
19	Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells. Nucleic Acids Research, 2018, 46, e7-e7.	14.5	31
20	Impact of lithiated cobalt oxide and phosphate nanoparticles on rainbow trout gill epithelial cells. Nanotoxicology, 2018, 12, 1166-1181.	3.0	20
21	<i>Dichomitus squalens</i> partially tailors its molecular responses to the composition of solid wood. Environmental Microbiology, 2018, 20, 4141-4156.	3.8	36
22	Tumor Retention of Enzyme-Responsive Pt(II) Drug-Loaded Nanoparticles Imaged by Nanoscale Secondary Ion Mass Spectrometry and Fluorescence Microscopy. ACS Central Science, 2018, 4, 1477-1484.	11,3	39
23	Lipid Corona Formation from Nanoparticle Interactions with Bilayers. CheM, 2018, 4, 2709-2723.	11.7	46
24	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	14.6	135
25	Regulation of infection efficiency in a globally abundant marine <i>Bacteriodetes</i> virus. ISME Journal, 2017, 11, 284-295.	9.8	40
26	High resolution visualization and exoâ€proteomics reveal the physiological role of XlnR and AraR in plant biomass colonization and degradation by <i>Aspergillus niger</i> . Environmental Microbiology, 2017, 19, 4587-4598.	3.8	6
27	Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium. PLoS ONE, 2017, 12, e0186440.	2.5	20
28	Cellular Delivery of Nanoparticles Revealed with Combined Optical and Isotopic Nanoscopy. ACS Nano, 2016, 10, 4046-4054.	14.6	36
29	Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus <i>Postia placenta</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10968-10973.	7.1	160
30	Research highlights: examining the effect of shape on nanoparticle interactions with organisms. Environmental Science: Nano, 2016, 3, 696-700.	4.3	13
31	Cells Respond to Distinct Nanoparticle Properties with Multiple Strategies As Revealed by Single-Cell RNA-Seq. ACS Nano, 2016, 10, 10173-10185.	14.6	21
32	Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms. ACS Synthetic Biology, 2016, 5, 193-199.	3.8	15
33	Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles. Environmental Science: Nano, 2016, 3, 45-55.	4.3	68
34	Alexa Fluor-Labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments. Bioconjugate Chemistry, 2015, 26, 593-601.	3.6	52
35	Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS Central Science, 2015, 1, 117-123.	11.3	121
36	Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials, 2015, 62, 147-154.	11.4	52

#	Article	IF	CITATIONS
37	Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. Environmental Science & Environmental Science & 2015, 49, 10642-10650.	10.0	103
38	Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface. Nanotoxicology, 2015, 9, 9-22.	3.0	51
39	Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquatic Toxicology, 2015, 162, 1-9.	4.0	77
40	Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bilayers. Journal of Physical Chemistry C, 2015, 119, 534-546.	3.1	77
41	Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis. PLoS ONE, 2015, 10, e0123188.	2.5	54
42	Distinct Strains of Toxoplasma gondii Feature Divergent Transcriptomes Regardless of Developmental Stage. PLoS ONE, 2014, 9, e111297.	2.5	37
43	Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns. Nanotoxicology, 2014, 8, 533-548.	3.0	59
44	Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy. Analyst, The, 2014, 139, 3174-3178.	3.5	20
45	Enhancing Graduate Student Communication to General Audiences through Blogging about Nanotechnology and Sustainability. Journal of Chemical Education, 2014, 91, 1600-1605.	2.3	21
46	The Highly Conserved MraZ Protein Is a Transcriptional Regulator in Escherichia coli. Journal of Bacteriology, 2014, 196, 2053-2066.	2.2	69
47	Enzyme-Directed Assembly of Nanoparticles in Tumors Monitored by <i>in Vivo</i> Whole Animal Imaging and <i>ex Vivo</i> Super-Resolution Fluorescence Imaging. Journal of the American Chemical Society, 2013, 135, 18710-18713.	13.7	104
48	Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822. Photosynthesis Research, 2013, 118, 25-36.	2.9	14
49	Understanding super-resolution nanoscopy and its biological applications in cell imaging. Physical Chemistry Chemical Physics, 2013, 15, 14856.	2.8	6
50	Interlaboratory Evaluation of <i>in Vitro</i> Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 2013, 121, 683-690.	6.0	176
51	Multi-omic Data Integration Links Deleted in Breast Cancer 1 (DBC1) Degradation to Chromatin Remodeling in Inflammatory Response. Molecular and Cellular Proteomics, 2013, 12, 2136-2147.	3.8	3
52	Aerosolized ZnO Nanoparticles Induce Toxicity in Alveolar Type II Epithelial Cells at the Air-Liquid Interface. Toxicological Sciences, 2012, 125, 450-461.	3.1	58
53	ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Particle and Fibre Toxicology, 2010, 7, 36.	6.2	397
54	Functionalized Nanoporous Silica for the Removal of Heavy Metals from Biological Systems: Adsorption and Application. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2749-2758.	8.0	115

#	Article	IF	CITATION
55	Syndecan-1 mediates the coupling of positively charged submicrometer amorphous silica particles with actin filaments across the alveolar epithelial cell membrane. Toxicology and Applied Pharmacology, 2009, 236, 210-220.	2.8	29
56	Particokinetics In Vitro: Dosimetry Considerations for In Vitro Nanoparticle Toxicity Assessments. Toxicological Sciences, 2007, 95, 300-312.	3.1	668
57	Submicrometer and Nanoscale Inorganic Particles Exploit the Actin Machinery To Be Propelled along Microvilli-like Structures into Alveolar Cells. ACS Nano, 2007, 1, 463-475.	14.6	42
58	NEW CHALLENGES FACING INTEGRATIVE BIOLOGICAL SCIENCE IN THE POST-GENOMIC ERA. Journal of Biological Systems, 2006, 14, 275-293.	1.4	4
59	Cholesterol Dictates the Freedom of EGF Receptors and HER2 in the Plane of the Membrane. Biophysical Journal, 2005, 89, 1362-1373.	0.5	116
60	Probing ion channel conformational dynamics using simultaneous single-molecule ultrafast spectroscopy and patch-clamp electric recording. Applied Physics Letters, 2004, 84, 1792-1794.	3.3	26
61	Probing Conformational Changes of Gramicidin Ion Channels by Single-Molecule Patch-Clamp Fluorescence Microscopy. Biophysical Journal, 2003, 85, 1826-1838.	0.5	114