Michael P Francis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5053635/publications.pdf

Version: 2024-02-01

840776 642732 24 578 11 23 citations h-index g-index papers 26 26 26 1110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gene electrotransfer of FGF2 enhances collagen scaffold biocompatibility. Bioelectrochemistry, 2022, 144, 107980.	4.6	2
2	Reduction of plasmid vector backbone length enhances reporter gene expression. Bioelectrochemistry, 2022, 144, 107981.	4.6	4
3	Assembled Cellâ€Decorated Collagen (ACâ€DC) Fiber Bioprinted Implants with Musculoskeletal Tissue Properties Promote Functional Recovery in Volumetric Muscle Loss. Advanced Healthcare Materials, 2022, 11, e2101357.	7.6	7
4	Biomanufacturing organized collagen-based microfibers as a Tissue ENgineered Device (TEND) for tendon regeneration. Biomedical Materials (Bristol), 2021, 16, 025025.	3.3	12
5	Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development. Acta Biomaterialia, 2021, 128, 186-200.	8.3	15
6	Monopolar gene electrotransfer enhances plasmid DNA delivery to skin. Bioelectrochemistry, 2021, 140, 107814.	4.6	5
7	Cardioporation enhances myocardial gene expression in rat heart. Bioelectrochemistry, 2021, 142, 107892.	4.6	1
8	Workshop on the characterization of fiberâ€based scaffolds: Challenges, progress, and future directions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2063-2072.	3.4	4
9	Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomedical Physics and Engineering Express, 2018, 4, 025013.	1.2	22
10	Direct crystal formation from micronized bone and lactic acid: The writing on the wall for calcium-containing crystal pathogenesis in osteoarthritis? PLoS ONE, 2018, 13, e0202373.	2.5	5
11	VEGF-B electrotransfer mediated gene therapy induces cardiomyogenesis in a rat model of cardiac ischemia. Bioelectrochemistry, 2018, 124, 105-111.	4.6	3
12	Pneumatospinning of collagen microfibers from benign solvents. Biofabrication, 2018, 10, 045004.	7.1	9
13	Additive manufacturing for biofabricated medical device applications. , 2018, , 311-344.		11
14	Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures. Acta Biomaterialia, 2017, 52, 92-104.	8.3	57
15	Preferential Lineage-Specific Differentiation of Osteoblast-Derived Induced Pluripotent Stem Cells into Osteoprogenitors. Stem Cells International, 2017, 2017, 1-15.	2.5	12
16	Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells. Electrospinning, 2016, 1 , .	1.6	3
17	Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration. Biofabrication, 2016, 8, 035007.	7.1	16
18	Recellularized human dermis for testing gene electrotransfer <i>ex vivo</i> . Biomedical Materials (Bristol), 2016, 11, 035002.	3.3	13

#	Article	IF	CITATION
19	Enhanced osseous integration of human trabecular allografts following surface modification with bioactive lipids. Drug Delivery and Translational Research, 2016, 6, 96-104.	5.8	11
20	Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer resembling the basal-type. Cancer Biology and Therapy, 2012, 13, 782-792.	3.4	62
21	Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell and Tissue Research, 2012, 349, 505-515.	2.9	62
22	Electrospinning adipose tissueâ€derived extracellular matrix for adipose stem cell culture. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1716-1724.	4.0	43
23	Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis, 2010, 6, 11-14.	1.2	108
24	Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomedical Materials (Bristol), 2008, 3, 045001.	3.3	91