Oliver D K Maddocks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5053626/publications.pdf

Version: 2024-02-01

38 papers 5,505 citations

236833 25 h-index 302012 39 g-index

44 all docs 44 docs citations

44 times ranked 9118 citing authors

#	Article	IF	CITATIONS
1	Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013, 493, 542-546.	13.7	773
2	Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012, 491, 458-462.	13.7	519
3	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	3.3	513
4	Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Reports, 2014, 7, 1248-1258.	2.9	468
5	Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 2017, 544, 372-376.	13.7	449
6	Metabolic Regulation by p53 Family Members. Cell Metabolism, 2013, 18, 617-633.	7.2	388
7	Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells. Molecular Cell, 2016, 61, 210-221.	4.5	320
8	One-carbon metabolism in cancer. British Journal of Cancer, 2017, 116, 1499-1504.	2.9	318
9	Metabolic regulation by p53. Journal of Molecular Medicine, 2011, 89, 237-245.	1.7	272
10	Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. ELife, 2016, 5, .	2.8	147
11	Serine and Functional Metabolites in Cancer. Trends in Cell Biology, 2017, 27, 645-657.	3.6	138
12	Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nature Communications, 2021, 12, 366.	5.8	138
13	Serine one-carbon catabolism with formate overflow. Science Advances, 2016, 2, e1601273.	4.7	128
14	Attaching and Effacing Escherichia coli Downregulate DNA Mismatch Repair Protein In Vitro and Are Associated with Colorectal Adenocarcinomas in Humans. PLoS ONE, 2009, 4, e5517.	1.1	114
15	Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. Journal of Cell Biology, 2017, 216, 1949-1957.	2.3	106
16	The creatine–phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nature Metabolism, 2020, 2, 62-80.	5.1	96
17	Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nature Communications, 2020, 11, 4236.	5.8	84
18	An Escherichia coli Effector Protein Promotes Host Mutation via Depletion of DNA Mismatch Repair Proteins. MBio, 2013, 4, e00152-13.	1.8	77

#	Article	IF	CITATIONS
19	A Neuronal Relay Mediates a Nutrient Responsive Gut/Fat Body Axis Regulating Energy Homeostasis in Adult Drosophila. Cell Metabolism, 2019, 29, 269-284.e10.	7.2	68
20	<scp>PHD</scp> 1 regulates p53â€mediated colorectal cancer chemoresistance. EMBO Molecular Medicine, 2015, 7, 1350-1365.	3.3	43
21	Assessment of Tumor Redox Status through (<i>S</i>)-4-(3-[18F]fluoropropyl)- <scp>L</scp> -Glutamic Acid PET Imaging of System xcâ° Activity. Cancer Research, 2022, 79, 853-863.	0.4	42
22	mTORC1 activity is supported by spatial association with focal adhesions. Journal of Cell Biology, 2021, 220, .	2.3	41
23	p53-mediated adaptation to serine starvation is retained by a common tumour-derived mutant. Cancer & Metabolism, 2018, 6, 18.	2.4	36
24	Polyamine pathway activity promotes cysteine essentiality in cancer cells. Nature Metabolism, 2020, 2, 1062-1076.	5.1	35
25	iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems. Cell Cycle, 2014, 13, 220-226.	1.3	34
26	Measurement of Tumor Antioxidant Capacity and Prediction of Chemotherapy Resistance in Preclinical Models of Ovarian Cancer by Positron Emission Tomography. Clinical Cancer Research, 2019, 25, 2471-2482.	3.2	32
27	Localization of NADPH Production: A Wheel within a Wheel. Molecular Cell, 2014, 55, 158-160.	4. 5	23
28	Supply and demand: Cellular nutrient uptake and exchange in cancer. Molecular Cell, 2021, 81, 3731-3748.	4.5	18
29	Metabolic tracing reveals novel adaptations to skeletal muscle cell energy production pathways in response to NAD+ depletion. Wellcome Open Research, 2018, 3, 147.	0.9	17
30	Metabolic tracing reveals novel adaptations to skeletal muscle cell energy production pathways in response to NAD+ depletion. Wellcome Open Research, 2018, 3, 147.	0.9	14
31	Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies. GeroScience, 2022, 44, 1961-1974.	2.1	10
32	Engineered diets to improve cancer outcomes. Current Opinion in Biotechnology, 2021, 70, 29-35.	3.3	8
33	Global metabolic alterations in colorectal cancer cells during irinotecan-induced DNA replication stress. Cancer & Metabolism, 2022, 10, .	2.4	8
34	Effects on kidney disease, fertility and development in mice inheriting a protein-truncating Denys-Drash syndrome allele (Wt1 tmT396). Transgenic Research, 2008, 17, 459-475.	1.3	5
35	The KRAS-BCAA-BCAT2 axis in PDAC development. Nature Cell Biology, 2020, 22, 139-140.	4.6	5
36	Use of 13C315N1-Serine or 13C515N1-Methionine for Studying Methylation Dynamics in Cancer Cell Metabolism and Epigenetics. Methods in Molecular Biology, 2019, 1928, 55-67.	0.4	2

#	Article	IF	CITATIONS
37	Direct Estimation of Metabolic Flux by Heavy Isotope Labeling Simultaneous with Pathway Inhibition: Metabolic Flux Inhibition Assay. Methods in Molecular Biology, 2019, 1862, 109-119.	0.4	2
38	SERIneALanine Killer: SPT promiscuity inhibits tumour growth via intra-tumoral deoxysphingolipid production. Signal Transduction and Targeted Therapy, 2020, 5, 274.	7.1	0