Chun-Ze Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5053498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autonomous in situ measurements of freshwater alkalinity. Limnology and Oceanography: Methods, 2021, 19, 51-66.	2.0	8
2	Inorganic Carbon and <i>p</i> CO ₂ Variability During Ice Formation in the Beaufort Gyre of the Canada Basin. Journal of Geophysical Research: Oceans, 2019, 124, 4017-4028.	2.6	12
3	Autonomous Optofluidic Chemical Analyzers for Marine Applications: Insights from the Submersible Autonomous Moored Instruments (SAMI) for pH and pCO2. Frontiers in Marine Science, 2018, 4, .	2.5	24
4	Spectrophotometric measurement of freshwater pH with purified metaâ€cresol purple and phenol red. Limnology and Oceanography: Methods, 2016, 14, 864-873.	2.0	32
5	Ionic Liquid Reference Electrodes With a Well ontrolled Co(II)/Co(III) Redox Buffer as Solid Contact. Electroanalysis, 2015, 27, 602-608.	2.9	38
6	Fluorous Membrane Ion-Selective Electrodes for Perfluorinated Surfactants: Trace-Level Detection and in Situ Monitoring of Adsorption. Analytical Chemistry, 2013, 85, 7471-7477.	6.5	64
7	Advantages and Limitations of Reference Electrodes with an Ionic Liquid Junction and Three-Dimensionally Ordered Macroporous Carbon as Solid Contact. Analytical Chemistry, 2012, 84, 7771-7778.	6.5	56
8	Potentiometric Analyte Detection at the ppb and ppt Level Using Fluorous Sensing Membranes. ECS Meeting Abstracts, 2011, , .	0.0	0
9	Cation-coordinating properties of perfluoro-15-crown-5. Journal of Fluorine Chemistry, 2010, 131, 42-46.	1.7	13
10	Effects of Architecture and Surface Chemistry of Three-Dimensionally Ordered Macroporous Carbon Solid Contacts on Performance of Ion-Selective Electrodes. Analytical Chemistry, 2010, 82, 680-688.	6.5	102
11	Highly Selective Detection of Silver in the Low ppt Range with Ion-Selective Electrodes Based on Ionophore-Doped Fluorous Membranes. Analytical Chemistry, 2010, 82, 7634-7640.	6.5	90
12	Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts. Journal of Solid State Electrochemistry, 2009, 13, 123-128.	2.5	63
13	Fluorous Polymeric Membranes for Ionophore-Based Ion-Selective Potentiometry: How Inert Is Teflon AF?. Journal of the American Chemical Society, 2009, 131, 1598-1606.	13.7	48
14	Response Mechanism of Ionâ€5elective Electrodes Based on a Guanidine Ionophore: An Apparently â€Twoâ€Thirds Nernstian' Response Slope. Electroanalysis, 2008, 20, 331-339.	2.9	9
15	Ion-Selective Electrodes with Three-Dimensionally Ordered Macroporous Carbon as the Solid Contact. Analytical Chemistry, 2007, 79, 4621-4626.	6.5	255
16	Inhibition and enhancement by organic compounds of luminol–KIO4–H2O2 chemiluminescence. Luminescence, 2006, 21, 195-201.	2.9	28
17	Flow injection determination of p-aminophenol at trace level using inhibited luminol–dimethylsulfoxide–NaOH–EDTA chemiluminescence. Water Research, 2005, 39, 396-402.	11.3	50
18	Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications. Analytical Chemistry, 2005, 77, 3324-3329.	6.5	469

CHUN-ZE LAI

#	Article	IF	CITATIONS
19	Determination of phenolic compounds using high-performance liquid chromatography with Ce4+-Tween 20 chemiluminescence detection. Analytica Chimica Acta, 2004, 511, 273-279.	5.4	34
20	Effect of pH on Inhibition and Enhancement of Luminol–H2O2–Co2+ Chemiluminescence by Phenolic Compounds and Amino Acids. Photochemistry and Photobiology, 2004, 79, 233.	2.5	51
21	Effect of pH on inhibition and enhancement of luminolâ€H ₂ O ₂ o ²⁺ chemiluminescence by phenolic compounds and amino acids. Photochemistry and Photobiology, 2004, 79, 233-241.	2.5	4
22	A novel chemiluminescent method for determination of phloroglucinol. Luminescence, 2003, 18, 318-323.	2.9	16