
Matthew A Barnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5053132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 2016, 17, 1-17.	1.5	713
2	Environmental Conditions Influence eDNA Persistence in Aquatic Systems. Environmental Science & Technology, 2014, 48, 1819-1827.	10.0	661
3	Particle size distribution and optimal capture of aqueous macrobial <scp>eDNA</scp> . Methods in Ecology and Evolution, 2014, 5, 676-684.	5.2	361
4	Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular Ecology, 2012, 21, 2555-2558.	3.9	248
5	Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 449-472.	8.3	202
6	Risk Analysis and Bioeconomics of Invasive Species to Inform Policy and Management. Annual Review of Environment and Resources, 2016, 41, 453-488.	13.4	149
7	Key Questions for Next-Generation Biomonitoring. Frontiers in Environmental Science, 2020, 7, .	3.3	68
8	Tradeâ€offs between reducing complex terminology and producing accurate interpretations from environmental DNA: Comment on "Environmental DNA: What's behind the term?―by Pawlowski et al., (2020). Molecular Ecology, 2021, 30, 4601-4605.	3.9	60
9	Rapid Invasive Species Detection by Combining Environmental DNA with Light Transmission Spectroscopy. Conservation Letters, 2013, 6, 402-409.	5.7	55
10	Fecundity of the exotic applesnail, <i>Pomacea insularum</i> . Journal of the North American Benthological Society, 2008, 27, 738-745.	3.1	53
11	Juvenile snails, adult appetites: contrasting resource consumption between two species of applesnails (Pomacea). Journal of Molluscan Studies, 2007, 74, 47-54.	1.2	45
12	Confronting species distribution model predictions with species functional traits. Ecology and Evolution, 2016, 6, 873-879.	1.9	41
13	Analyzing airborne environmental DNA: A comparison of extraction methods, primer type, and trap type on the ability to detect airborne eDNA from terrestrial plant communities. Environmental DNA, 2019, 1, 176-185.	5.8	38
14	Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA, 2021, 3, 643-653.	5.8	38
15	Viability of Aquatic Plant Fragments following Desiccation. Invasive Plant Science and Management, 2013, 6, 320-325.	1.1	32
16	The detection of a non-anemophilous plant species using airborne eDNA. PLoS ONE, 2019, 14, e0225262.	2.5	32
17	Geographic selection bias of occurrence data influences transferability of invasive <i><scp>H</scp>ydrilla verticillata</i> distribution models. Ecology and Evolution, 2014, 4, 2584-2593.	1.9	31
18	Molecular Detection of Invasive Species in Heterogeneous Mixtures Using a Microfluidic Carbon Nanotube Platform. PLoS ONE, 2011, 6, e17280.	2.5	31

MATTHEW A BARNES

#	Article	IF	CITATIONS
19	Quantitative and Rapid DNA Detection by Laser Transmission Spectroscopy. PLoS ONE, 2011, 6, e29224.	2.5	26
20	Airborne environmental DNA metabarcoding detects more diversity, with less sampling effort, than a traditional plant community survey. Bmc Ecology and Evolution, 2021, 21, 218.	1.6	24
21	DNA-based species detection capabilities using laser transmission spectroscopy. Journal of the Royal Society Interface, 2013, 10, 20120637.	3.4	18
22	Using species distribution models to guide seagrass management. Estuarine, Coastal and Shelf Science, 2020, 240, 106790.	2.1	18
23	Plant–animal interactions in the era of environmental <scp>DNA</scp> (<scp>eDNA</scp>)—A review. Environmental DNA, 2022, 4, 987-999.	5.8	17
24	Environmental DNA Methods for Ecological Monitoring and Biodiversity Assessment in Estuaries. Estuaries and Coasts, 2022, 45, 2254-2273.	2.2	16
25	Airborne eDNA Reflects Human Activity and Seasonal Changes on a Landscape Scale. Frontiers in Environmental Science, 2021, 8, .	3.3	14
26	Eurasian watermilfoil fitness loss and invasion potential following desiccation during simulated overland transport. Aquatic Invasions, 2012, 7, 135-142.	1.6	14
27	Detection of the Amphibian Pathogens Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in West Texas, USA, Using Environmental DNA. Journal of Wildlife Diseases, 2020, 56, 702.	0.8	11
28	Adapting to invasions in a changing world: invasive species as an economic resource , 2014, , 326-344.		4
29	Predicting suitable habitat for dreissenid mussel invasion in Texas based on climatic and lake physical characteristics. Management of Biological Invasions, 2020, 11, 63-79.	1.2	4
30	Integrating Theoretical Components: A Graphical Model for Graduate Students and Researchers. BioScience, 2012, 62, 594-602.	4.9	3
31	Place-Based Learning with Out-of-Place Species & Students: Teaching International Students about Biological Invasions. American Biology Teacher, 2019, 81, 503-506.	0.2	3
32	THE STATUS OF PSEUDOGYMNOASCUS DESTRUCTANS IN LOUISIANA. Southwestern Naturalist, 2019, 63, 216.	0.1	3
33	Preliminary analysis reveals sediment burial decreases mass loss and increases survival of the aquatic invasive plant Hydrilla verticillata following desiccation over short time scales. Management of Biological Invasions, 2017, 8, 517-522.	1.2	2
34	Editorial: Environmental DNA Innovations for Conservation. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	1