Francisca G Caballero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5052162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Super-Bainite. , 2022, , 73-83.		1
2	Assessing the scale contributing factors of three carbide-free bainitic steels: A complementary theoretical and experimental approach. Materials and Design, 2021, 197, 109217.	7.0	18
3	Explaining the dilatometric behavior during bainite transformation under the effect of variant selection. Journal of Alloys and Compounds, 2021, 864, 158130.	5.5	1
4	Effect of Microsegregation and Bainitic Reaction Temperature on the Microstructure and Mechanical Properties of a High-Carbon and High-Silicon Cast Steel. Metals, 2021, 11, 220.	2.3	4
5	Future Trends on Displacive Stress and Strain Induced Transformations in Steels. Metals, 2021, 11, 299.	2.3	9
6	A New Systematic Approach Based on Dilatometric Analysis to Track Bainite Transformation Kinetics and the Influence of the Prior Austenite Grain Size. Metals, 2021, 11, 324.	2.3	8
7	Effect of Ausforming on the Macro- and Micro-texture of Bainitic Microstructures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4033-4052.	2.2	6
8	The role of plastic strains on variant selection in ausformed bainitic microstructures studied by finite elements and crystal plasticity simulations. Journal of Materials Research and Technology, 2021, 13, 1416-1430.	5.8	4
9	Bainitic Ferrite Plate Thickness Evolution in Two Nanostructured Steels. Materials, 2021, 14, 4347.	2.9	9
10	Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite. Materials and Design, 2021, 211, 110143.	7.0	16
11	Nanostructured Steels. , 2021, , 327-387.		0
12	Assessing the implementation of machine learning models for thermal treatments design. Materials Science and Technology, 2021, 37, 1302-1310.	1.6	3
13	An integrated-model for austenite yield strength considering the influence of temperature and strain rate in lean steels. Materials and Design, 2020, 188, 108435.	7.0	17
14	Retained Austenite Destabilization during Tempering of Low-Temperature Bainite. Applied Sciences (Switzerland), 2020, 10, 8901.	2.5	18
15	Effect of the Microsegregation on Martensitic and Bainitic Reactions in a High Carbon-High Silicon Cast Steel. Metals, 2020, 10, 574.	2.3	4
16	Stress or strain induced martensitic and bainitic transformations during ausforming processes. Acta Materialia, 2020, 189, 60-72.	7.9	35
17	Positron Annihilation Spectroscopy Study of Carbon-Vacancy Interaction in Low-Temperature Bainite. Scientific Reports, 2020, 10, 487.	3.3	15
18	Quantitative Assessment of the Time to End Bainitic Transformation. Metals, 2019, 9, 925.	2.3	14

#	Article	IF	CITATIONS
19	Understanding Mechanical Properties of Nano-Grained Bainitic Steels from Multiscale Structural Analysis. Metals, 2019, 9, 426.	2.3	8
20	Hot Forming of Ultra-Fine-Grained Multiphase Steel Products Using Press Hardening Combined with Quenching and Partitioning Process. Metals, 2019, 9, 357.	2.3	7
21	Advanced Heat Treatments and Complex Ferritic Structures for Bearing Steels. Metals, 2019, 9, 1137.	2.3	1
22	Crystallographic examination of the interaction between texture evolution, mechanically induced martensitic transformation and twinning in nanostructured bainite. Journal of Alloys and Compounds, 2018, 752, 505-519.	5.5	19
23	Low-Temperature Bainite: A Thermal Stability Study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2026-2036.	2.2	22
24	High hardness and retained austenite stability in Si-bearing hypereutectoid steel through new heat treatment design principles. Materials and Design, 2018, 142, 279-287.	7.0	29
25	Carbon Clustering in Low-Temperature Bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5277-5287.	2.2	21
26	Effect of ausforming on the anisotropy of low temperature bainitic transformation. Materials Characterization, 2018, 145, 371-380.	4.4	36
27	Quantitative assessment of carbon allocation anomalies in low temperature bainite. Acta Materialia, 2017, 133, 333-345.	7.9	56
28	Carbon concentration measurements by atom probe tomography in the ferritic phase of high-silicon steels. Acta Materialia, 2017, 125, 359-368.	7.9	37
29	The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3985-3996.	2.2	22
30	The effect of thermal aging on the strength and the thermoelectric power of the Ti-6Al-4V alloy. Physical Mesomechanics, 2017, 20, 447-456.	1.9	11
31	Tensile Ductility of Nanostructured Bainitic Steels: Influence of Retained Austenite Stability. Metals, 2017, 7, 31.	2.3	25
32	Transferring Nanoscale Bainite Concept to Lower C Contents: A Perspective. Metals, 2017, 7, 159.	2.3	40
33	A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels. Materials, 2016, 9, 831.	2.9	25
34	Vanadium Effect on a Medium Carbon Forging Steel. Metals, 2016, 6, 130.	2.3	16
35	Ductility of Nanostructured Bainite. Metals, 2016, 6, 302.	2.3	34
36	Induced martensitic transformation during tensile test in nanostructured bainitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 169-177.	5.6	30

#	Article	IF	CITATIONS
37	Bainitic Steel: Transformation Mechanisms and Properties. , 2016, , 291-305.		1
38	Bainitic Steels: Tempering. , 2016, , 1-14.		2
39	Bainitic Steel: Nanostructured. , 2016, , 271-290.		4
40	Retained Austenite: Stability in a Nanostructured Bainitic Steel. , 2016, , 3077-3087.		4
41	Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Materials Characterization, 2016, 122, 83-89.	4.4	73
42	The role of silicon, vacancies, and strain in carbon distribution in low temperature bainite. Journal of Alloys and Compounds, 2016, 673, 289-294.	5.5	10
43	Improving wear resistance of steels through nanocrystalline structures obtained by bainitic transformation. Materials Science and Technology, 2016, 32, 308-312.	1.6	19
44	Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM. Scientific Reports, 2015, 5, 17164.	3.3	52
45	Martensite and bainite in nanocrystalline steels: understanding, design and applications. MATEC Web of Conferences, 2015, 33, 01003.	0.2	Ο
46	The Influence of Heat Treatment on the Microstructure and Machinability of a Prehardened Mold Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2157-2171.	2.2	25
47	Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels. Materials Science and Technology, 2015, 31, 1508-1520.	1.6	54
48	Reciprocating-sliding wear behavior of nanostructured and ultra-fine high-silicon bainitic steels. Wear, 2015, 338-339, 202-209.	3.1	37
49	Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality. Acta Materialia, 2015, 91, 162-173.	7.9	94
50	On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 630, 71-77.	5.6	70
51	Detailed characterization of complex banding in air-cooled bainitic steels. Journal of Mining and Metallurgy, Section B: Metallurgy, 2015, 51, 25-32.	0.8	5
52	Modern steels at atomic and nanometre scales. Materials Science and Technology, 2015, 31, 764-772.	1.6	15
53	Tensile Response of Two Nanoscale Bainite Composite-Like Structures. Jom, 2015, 67, 2223-2235.	1.9	48
54	A procedure for indirect and automatic measurement of prior austenite grain size in bainite/martensite microstructures. Journal of Materials Science, 2015, 50, 258-267.	3.7	6

#	Article	IF	CITATIONS
55	Advanced High Strength Bainitic Steels. , 2014, , 165-190.		9
56	Three phase crystallography and solute distribution analysis during residual austenite decomposition in tempered nanocrystalline bainitic steels. Materials Characterization, 2014, 88, 15-20.	4.4	18
57	Industrialised nanocrystalline bainitic steels. Design approach. International Journal of Materials Research, 2014, 105, 725-734.	0.3	20
58	Nanostructured steel industrialisation: Plausible reality. Materials Science and Technology, 2014, 30, 1071-1078.	1.6	67
59	Composition design of nanocrystalline bainitic steels by diffusionless solid reaction. Metals and Materials International, 2014, 20, 405-415.	3.4	24
60	Opening previously impossible avenues for phase transformation in innovative steels by atom probe tomography. Materials Science and Technology, 2014, 30, 1034-1039.	1.6	20
61	Design of Novel Bainitic Steels: Moving from UltraFine to Nanoscale Structures. Jom, 2014, 66, 747-755.	1.9	56
62	Influence of transformation temperature on carbide precipitation sequence during lower bainite formation. Materials Chemistry and Physics, 2014, 146, 50-57.	4.0	30
63	New experimental evidence of the diffusionless transformation nature of bainite. Journal of Alloys and Compounds, 2013, 577, S626-S630.	5.5	58
64	Significance of the contacting and no contacting thermoelectric power measurements applied to grit blasted medical Ti6Al4V. Materials Science and Engineering C, 2013, 33, 1417-1422.	7.3	16
65	Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Materials & Design, 2013, 49, 667-680.	5.1	104
66	Microstructure evolution during tensile deformation of a nanostructured bainitic steel. Scripta Materialia, 2013, 69, 777-780.	5.2	53
67	An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels. Journal of Alloys and Compounds, 2013, 577, S43-S47.	5.5	79
68	Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions. Wear, 2013, 298-299, 42-47.	3.1	131
69	Strengthening and mechanical stability mechanisms in nanostructured bainite. Journal of Materials Science, 2013, 48, 6121-6132.	3.7	76
70	Retained austenite thermal stability in a nanostructured bainitic steel. Materials Characterization, 2013, 81, 105-110.	4.4	45
71	Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications. Materials Science and Technology, 2013, 29, 1166-1173.	1.6	96
72	Nanoengineering in the modern steel industry. Materials Science and Technology, 2013, 29, 1149-1151.	1.6	3

#	Article	IF	CITATIONS
73	Nondestructive thermoelectric evaluation of the grit blasting induced effects in metallic biomaterials. , 2013, , .		1
74	Exploring Carbide-Free Bainitic Structures for Hot Dip Galvanizing Products. ISIJ International, 2013, 53, 1253-1259.	1.4	11
75	Carbide-free bainite in steels. , 2012, , 436-467.		11
76	A study of changes taking place in Cu–Cr–Zr alloy during severe plastic deformation and annealing as evaluated by thermoelectric power measurements. Scripta Materialia, 2012, 67, 806-809.	5.2	13
77	Determination of hot and cold rolling textures of steels: Combined Bayesian neural network model. Materials Science and Technology, 2012, 28, 321-333.	1.6	6
78	Phase transformations in advanced bainitic steels. , 2012, , 271-294.		5
79	Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Materials Science and Technology, 2012, 28, 95-102.	1.6	114
80	Temperature dependence of carbon supersaturation of ferrite in bainitic steels. Scripta Materialia, 2012, 67, 846-849.	5.2	83
81	Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 185-192.	5.6	168
82	Assessment of blasting induced effects on medical 316 LVM stainless steel by contacting and non-contacting thermoelectric power techniques. Surface and Coatings Technology, 2012, 206, 2941-2946.	4.8	17
83	On measurement of carbon content in retained austenite in a nanostructured bainitic steel. Journal of Materials Science, 2012, 47, 1004-1010.	3.7	88
84	The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel. Journal of Materials Science, 2012, 47, 3613-3620.	3.7	8
85	Influence of chemical composition and processing conditions on interstitial content of cold rolled ferritic steels. Materials Science and Technology, 2011, 27, 1143-1148.	1.6	0
86	Using Tournaments to Reduce Agency Problems: The Case of Franchising. Entrepreneurship Theory and Practice, 2011, 35, 427-447.	10.2	46
87	Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Materialia, 2011, 59, 6117-6123.	7.9	68
88	Atom Probe Tomography Analysis of Precipitation during Tempering of a Nanostructured Bainitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3660-3668.	2.2	47
89	Effect of V Precipitation on Continuously Cooled Sulfur-Lean Vanadium-Alloyed Steels for Long Products Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3743-3751.	2.2	18
90	Foreword: Symposium on Austenite Formation and Decomposition IV. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3590-3590.	2.2	1

#	Article	IF	CITATIONS
91	The processing of nanocrystalline steels by solid reaction. , 2011, , 85-117.		4
92	Influence of Microalloying Elements on Recrystallization Texture of Warm-Rolled Interstitial Free Steels. Materials Transactions, 2010, 51, 625-634.	1.2	14
93	Examination of carbon partitioning into austenite during tempering of bainite. Scripta Materialia, 2010, 63, 442-445.	5.2	103
94	Carbon supersaturation of ferrite in a nanocrystalline bainitic steel. Acta Materialia, 2010, 58, 2338-2343.	7.9	168
95	Tracking solute atoms during bainite reaction in a nanocrystalline steel. Materials Science and Technology, 2010, 26, 889-898.	1.6	28
96	Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry. Scripta Materialia, 2009, 61, 855-858.	5.2	84
97	Theoretical design and advanced microstructure in super high strength steels. Materials & Design, 2009, 30, 2077-2083.	5.1	164
98	Application of thermoelectric power measurements to the study of cold rolled austenitic stainless steels. Journal of Materials Science, 2009, 44, 4499-4502.	3.7	4
99	Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels. Journal of Materials Science, 2009, 44, 4617-4624.	3.7	79
100	Effect of V and N Precipitation on Acicular Ferrite Formation in Sulfur-Lean Vanadium Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 522-538.	2.2	32
101	Global recrystallisation model of low carbon sheet steels with different cementite contents. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 519, 9-18.	5.6	11
102	Toughness deterioration in advanced high strength bainitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 525, 87-95.	5.6	87
103	New experimental evidence on the incomplete transformation phenomenon in steel. Acta Materialia, 2009, 57, 8-17.	7.9	139
104	Advanced vanadium alloyed steel for heavy product applications. Materials Science and Technology, 2009, 25, 1383-1386.	1.6	10
105	The approach to equilibrium during tempering of a bulk nanocrystalline steel: an atom probe investigation. Journal of Materials Science, 2008, 43, 3769-3774.	3.7	13
106	Phase transformation theory: A powerful tool for the design of advanced steels. Jom, 2008, 60, 16-21.	1.9	17
107	Redistribution of alloying elements during tempering of a nanocrystalline steel. Acta Materialia, 2008, 56, 188-199.	7.9	120
108	Dependence of martensite start temperature on fine austenite grain size. Scripta Materialia, 2008, 58, 134-137.	5.2	148

15115

#	Article	IF	CITATIONS
109	Recrystallisation and dilatometric behaviour of low carbon and ultralow carbon steels. Materials Science and Technology, 2008, 24, 832-837.	1.6	4
110	Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel. Materials Science and Technology, 2008, 24, 266-272.	1.6	39
111	A New Approach on the Modelling of Isothermal Recrystallisation in Cold Rolled Ferritic Steels: An Application to Back-Annealing of Low Carbon Sheet Steels. Materials Transactions, 2008, 49, 2292-2297.	1.2	3
112	Effects of Morphology and Stability of Retained Austenite on the Ductility of TRIP-aided Bainitic Steels. ISIJ International, 2008, 48, 1256-1262.	1.4	90
113	Influence of V Precipitates on Acicular Ferrite Transformation Part 2: Transformation Kinetics. ISIJ International, 2008, 48, 1276-1279.	1.4	11
114	Influence of V Precipitates on Acicular Ferrite Transformation Part 1: The Role of Nitrogen. ISIJ International, 2008, 48, 1270-1275.	1.4	41
115	Alteration of O-J-I-P Chlorophyll Induction Kinetics by Dichromate: An Effect on the Water-Splitting System. , 2008, , 661-665.		1
116	Use of titanium and zirconium in centrifugally cast heat resistant steel. Materials Science and Technology, 2007, 23, 528-534.	1.6	18
117	Influence of austenite grain size on overaging treatment of continuous annealed dual phase steels. Materials Science and Technology, 2007, 23, 671-676.	1.6	2
118	Modelling the Influence of Cementite on Static Recrystallisation in Cold-Rolled Low-Carbon Steels. Materials Science Forum, 2007, 550, 595-600.	0.3	1
119	Design of carbide-free low-temperature ultra high strength bainitic steels. International Journal of Materials Research, 2007, 98, 137-143.	0.3	39
120	Advanced Ultrahigh Strength Bainitic Steels. Materials and Manufacturing Processes, 2007, 22, 502-506.	4.7	27
121	Solute Trapped at Defects during the Displacive Formation of Bainitic Ferrite. Microscopy and Microanalysis, 2007, 13, .	0.4	2
122	Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Materialia, 2007, 55, 381-390.	7.9	307
123	Comparison of the annealing behaviour between cold and warm rolled ELC steels by thermoelectric power measurements. Acta Materialia, 2007, 55, 2075-2083.	7.9	31
124	Determination of local carbon content in austenite during intercritical annealing of dual phase steels by PEELS analysis. Scripta Materialia, 2007, 57, 89-92.	5.2	23
125	Artificial neural network modeling for the prediction of critical transformation temperatures in steels. Journal of Materials Science, 2007, 42, 5391-5397.	3.7	27
126	Neural network analysis of the influence of processing on strength and ductility of automotive low carbon sheet steels. Computational Materials Science, 2006, 38, 192-201.	3.0	34

#	Article	IF	CITATIONS
127	Design of Advanced Bainitic Steels by Optimisation of TTT Diagrams and TO Curves. ISIJ International, 2006, 46, 1479-1488.	1.4	89
128	Evolution of Microstructural Banding during the Manufacturing Process of Dual Phase Steels. Materials Transactions, 2006, 47, 2269-2276.	1.2	68
129	Evaluation of Displacive Models for Bainite Transformation Kinetics in Steels. Materials Transactions, 2006, 47, 1492-1500.	1.2	43
130	New Model for the Overall Transformation Kinetics of Bainite. Part 1: the Model. Materials Transactions, 2006, 47, 2465-2472.	1.2	32
131	New Model for the Overall Transformation Kinetics of Bainite. Part 2: Validation. Materials Transactions, 2006, 47, 2473-2479.	1.2	12
132	Influence of processing parameters on the recrystallized microstructure of extra-low-carbon steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2059-2068.	2.2	6
133	Interpretation of a dilatometric anomaly previous to the ferrite-to-austenite transformation in a low carbon steel. Scripta Materialia, 2006, 54, 949-954.	5.2	29
134	Austenite retention in low Al/Si multiphase steels. Scripta Materialia, 2006, 55, 441-443.	5.2	22
135	Neural network model for improvement of strength–ductility compromise in low carbon sheet steels. Materials Science and Technology, 2006, 22, 1163-1170.	1.6	5
136	Influence of Deformation and Molybdenum Content on Acicular Ferrite Formation in Medium Carbon Steels. ISIJ International, 2006, 46, 1093-1100.	1.4	10
137	Study and modelling of the influence of second phase particles on the austenite grain growth in a niobium microalloyed steel. Revista De Metalurgia, 2006, 42, .	0.5	1
138	Ultra-high-strength Bainitic Steels. ISIJ International, 2005, 45, 1736-1740.	1.4	256
139	The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures. Materials Transactions, 2005, 46, 1839-1846.	1.2	197
140	Dilatometric Study of Reaustenitisation of High Silicon Bainitic Steels: Decomposition of Retained Austenite. Materials Transactions, 2005, 46, 581-586.	1.2	32
141	Precipitation of M23C6 carbides: thermoelectric power measurements. Scripta Materialia, 2005, 52, 501-505.	5.2	19
142	Neural Network Model for Isothermal Pearlite Transformation. Part I: Interlamellar Spacing. ISIJ International, 2005, 45, 229-237.	1.4	11
143	Neural Network Model for Isothermal Pearlite Transformation. Part II: Growth Rate. ISIJ International, 2005, 45, 238-247.	1.4	7
144	New approach for the bainite start temperature calculation in steels. Materials Science and Technology, 2005, 21, 934-940.	1.6	26

#	Article	IF	CITATIONS
145	Influence of Second Phase Particles on Recrystallisation of Cold-Rolled Low Carbon Microalloyed Steels during Isothermal Annealing. Materials Science Forum, 2005, 500-501, 803-0.	0.3	7
146	Mechanical Properties of Low-Temperature Bainite. Materials Science Forum, 2005, 500-501, 495-502.	0.3	109
147	Discussion on the Rate Controlling Process of Coarsening of Niobium Carbonitrides in a Niobium Microalloyed Steel. Materials Science Forum, 2005, 500-501, 703-710.	0.3	4
148	Evaluation of the Austenitic Grain Growth by Thermoelectric Power Measurements. Materials Science Forum, 2004, 467-470, 863-868.	0.3	5
149	Kinetics of Austenite Grain Growth during a Continuous Heating of a Niobium Microalloyed Steel. Materials Science Forum, 2004, 467-470, 929-934.	0.3	2
150	Tempering of hard mixture of bainitic ferrite and austenite. Materials Science and Technology, 2004, 20, 814-818.	1.6	156
151	Reply to comments on kinetics model of isothermal pearlite formation in a 0.4C–1.6Mn steel. Scripta Materialia, 2004, 50, 175-177.	5.2	3
152	Thermoelectric power studies on a martensitic stainless steel. Scripta Materialia, 2004, 50, 1061-1066.	5.2	44
153	Very strong bainite. Current Opinion in Solid State and Materials Science, 2004, 8, 251-257.	11.5	546
154	The Role of Inclusions and Austenite Grain Size on Intragranular Nucleation of Ferrite in Medium Carbon Microalloyed Steels. Materials Transactions, 2004, 45, 2678-2685.	1.2	31
155	Austenite Grain Coarsening Under the Influence of Niobium Carbonitrides. Materials Transactions, 2004, 45, 2797-2804.	1.2	26
156	Time-Temperature-Transformation Diagram within the Bainitic Temperature Range in a Medium Carbon Steel. Materials Transactions, 2004, 45, 3272-3281.	1.2	23
157	Proposal of an empirical formula for the austenitising temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 354-361.	5.6	2
158	Austenización de aceros con microestructuras diferentes. Revista De Metalurgia, 2004, 40, 214-218.	0.5	4
159	The origin of splitting phenomena in the martensitic transformation of stainless steels. Scripta Materialia, 2003, 49, 315-320.	5.2	23
160	Analysis of effect of alloying elements on martensite start temperature of steels. Materials Science and Technology, 2003, 19, 581-586.	1.6	70
161	Design of Novel High-Strength Bainitic Steels. Materials Science Forum, 2003, 426-432, 1337-1342.	0.3	13
162	Proposition of Two Parameters for a Good Characterisation of the Austenitising Condition of Microalloyed Steels. Materials Science Forum, 2003, 426-432, 1611-1618.	0.3	1

#	Article	IF	CITATIONS
163	Relevant aspects of allotriomorphic and idiomorphic ferrite transformation kinetics. Materials Science and Technology, 2003, 19, 195-201.	1.6	6
164	The Influence of Titanium and Vanadium on Isothermal Growth Kinetics of Allotriomorphic Ferrite in Medium Carbon Microalloyed Steels. Materials Transactions, 2003, 44, 220-225.	1.2	1
165	Austenite Grain Size Effects on Isothermal Allotriomorphic Ferrite Formation in 0.37C-1.45Mn-0.11V Microalloyed Steel. Materials Transactions, 2003, 44, 1087-1095.	1.2	13
166	Development of Hard Bainite. ISIJ International, 2003, 43, 1238-1243.	1.4	343
167	Acceleration of Low-temperature Bainite. ISIJ International, 2003, 43, 1821-1825.	1.4	416
168	An Attempt to Establish the Variables That Most Directly Influence the Austenite Formation Process in Steels. ISIJ International, 2003, 43, 726-735.	1.4	25
169	Low temperature bainite. European Physical Journal Special Topics, 2003, 112, 285-288.	0.2	33
170	Prediction of martensite start temperature by neural network analysis. European Physical Journal Special Topics, 2003, 112, 217-221.	0.2	0
171	Evaluation and review of simultaneous transformation model in high strength low alloy steels. Materials Science and Technology, 2002, 18, 534-540.	1.6	27
172	Determination of Ms Temperature in Steels: A Bayesian Neural Network Model ISIJ International, 2002, 42, 894-902.	1.4	176
173	Very strong low temperature bainite. Materials Science and Technology, 2002, 18, 279-284.	1.6	459
174	Application of dilatometric analysis to the study of solid–solid phase transformations in steels. Materials Characterization, 2002, 48, 101-111.	4.4	212
175	Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Materials Characterization, 2002, 49, 121-127.	4.4	111
176	Effect of titanium on the allotriomorphic ferrite transformation kinetics in medium carbon–manganese steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 328, 156-160.	5.6	5
177	Kinetics model of isothermal pearlite formation in a 0.4C–1.6Mn steel. Acta Materialia, 2002, 50, 4629-4641.	7.9	23
178	Title is missing!. Journal of Materials Science, 2002, 37, 3533-3540.	3.7	40
179	Diseño de nuevos aceros bainÃticos Revista De Metalurgia, 2002, 38, 3-13.	0.5	1
180	Modelización de la formación isotérmica de ferrita idiomórfica en aceros de medio carbono microaleados con vanadio-titanio. Revista De Metalurgia, 2002, 38, 183-194.	0.5	0

#	Article	IF	CITATIONS
181	Modelling of isothermal formation of pearlite and subsequent reaustenitisation in eutectoid steel during continuous heating. Materials Science and Technology, 2001, 17, 686-692.	1.6	7
182	Mathematical Modeling of Iron and Steel Making Processes. Modelling of Kinetics of Austenite Formation in Steels with Different Initial Microstructures ISIJ International, 2001, 41, 1093-1102.	1.4	95
183	Design of novel high strength bainitic steels: Part 2. Materials Science and Technology, 2001, 17, 517-522.	1.6	182
184	Modeling of kinetics of isothermal idiomorphic ferrite formation in a medium-carbon vanadium-titanium microalloyed steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1591-1597.	2.2	13
185	Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1283-1291.	2.2	44
186	Modeling of kinetics of austenite-to-allotriomorphic ferrite transformation in 0.37C-1.45Mn-0.11V microalloyed steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 661-669.	2.2	22
187	Title is missing!. Metallurgist, 2001, 45, 72-78.	0.6	0
188	Title is missing!. Journal of Materials Science Letters, 2001, 20, 1135-1137.	0.5	4
189	Effect of molybdenum on continuous cooling transformations in two medium carbon forging steels. Journal of Materials Science, 2001, 36, 565-571.	3.7	11
190	Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels. Materials Characterization, 2001, 46, 389-398.	4.4	103
191	Incubation time of isothermally transformed allotriomorphic ferrite in medium carbon steels. Scripta Materialia, 2001, 44, 129-134.	5.2	21
192	Isothermal allotriomorphic ferrite formation kinetics in a medium carbon vanadium-titanium microalloyed steel. Scripta Materialia, 2001, 44, 593-600.	5.2	15
193	Design of novel high strength bainitic steels: Part 1. Materials Science and Technology, 2001, 17, 512-516.	1.6	222
194	Kinetics and dilatometric behaviour of non-isothermal ferrite–austenite transformation. Materials Science and Technology, 2001, 17, 1114-1118.	1.6	46
195	Modelización de la formación isotérmica de ferrita alotriomórfica a temperaturas inferiores a la del eutectoide en un acero microaleado de medio carbono. Revista De Metalurgia, 2001, 37, 509-518.	0.5	1
196	Control de la descomposición anisotérmica de la austenita en ferrita acicular buscando la combinación óptima de propiedades mecánicas en un acero microaleado de forja. Revista De Metalurgia, 2001, 37, 240-244.	0.5	0
197	Modelización del proceso de austenización de un acero eutectoide. Revista De Metalurgia, 2001, 37, 573-581.	0.5	0
198	Influence of scale parameters of pearlite on the kinetics of anisothermal pearlite-to-austenite transformation in a eutectoid steel. Scripta Materialia, 2000, 42, 1159-1165.	5.2	38

#	Article	IF	CITATIONS
199	Modeling of the interlamellar spacing of isothermally formed pearlite in a eutectoid steel. Scripta Materialia, 2000, 42, 537-542.	5.2	35
200	Characterization and morphological analysis of pearlite in a eutectoid steel. Materials Characterization, 2000, 45, 111-116.	4.4	43
201	Dilatometric characterization of pearlite dissolution in 0.1C-0.5Mn low carbon low manganese steel. Scripta Materialia, 1998, 38, 1835-1842.	5.2	41
202	Modelling of kinetics and dilatometric behavior of non-isothermal pearlite-to-austenite transformation in an eutectoid steel. Scripta Materialia, 1998, 39, 791-796.	5.2	86
203	Modelling of isothermal ferrite formation using an analytical treatment of soft impingement in 0.37C–1.45Mn–0.11V microalloyed steel. Scripta Materialia, 1998, 39, 853-859.	5.2	26
204	Effect of the Microalloying Elements on Nucleation and Growth Kinetics of Allotriomorphic Ferrite in Medium Carbon-Manganese Steels. Materials Science Forum, 1998, 284-286, 231-236.	0.3	2
205	Toughness of Advanced High Strength Bainitic Steels. Materials Science Forum, 0, 638-642, 118-123.	0.3	10
206	Distribution of Dislocations in Nanostructured Bainite. Solid State Phenomena, 0, 172-174, 117-122.	0.3	39
207	Slow Bainite: an Opportunity to Determine the Carbon Content of the Bainitic Ferrite during Growth. Solid State Phenomena, 0, 172-174, 111-116.	0.3	6
208	The Influence of Austenitization Temperature on the Mechanical Properties of a Prehardened Mould Steel. Materials Science Forum, 0, 706-709, 2140-2145.	0.3	13
209	Evolution of Microstructure and Mechanical Properties during Tempering of Continuously Cooled Bainitic Steels. Materials Science Forum, 0, 706-709, 2308-2313.	0.3	3
210	Complex Microstructural Banding of Continuously Cooled Carbide-Free Bainitic Steels. Materials Science Forum, 0, 783-786, 980-985.	0.3	5
211	Complex Nano-Scale Structures for Unprecedented Properties in Steels. Materials Science Forum, 0, 879, 2401-2406.	0.3	2
212	Correlation of Fatigue Limit and Crack Growth Threshold Value to the Nanobainitic Microstructure. Solid State Phenomena, 0, 258, 314-317.	0.3	2
213	Characterization of Grit Blasted Metallic Biomaterials by Thermoelectric Power Measurements. , 0, , 443-450.		0