Francisca G Caballero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5052162/publications.pdf

Version: 2024-02-01

213 papers

9,650 citations

41344 49 h-index 90 g-index

220 all docs 220 docs citations

times ranked

220

2585 citing authors

#	Article	IF	CITATIONS
1	Very strong bainite. Current Opinion in Solid State and Materials Science, 2004, 8, 251-257.	11.5	546
2	Very strong low temperature bainite. Materials Science and Technology, 2002, 18, 279-284.	1.6	459
3	Acceleration of Low-temperature Bainite. ISIJ International, 2003, 43, 1821-1825.	1.4	416
4	Development of Hard Bainite. ISIJ International, 2003, 43, 1238-1243.	1.4	343
5	Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Materialia, 2007, 55, 381-390.	7.9	307
6	Ultra-high-strength Bainitic Steels. ISIJ International, 2005, 45, 1736-1740.	1.4	256
7	Design of novel high strength bainitic steels: Part 1. Materials Science and Technology, 2001, 17, 512-516.	1.6	222
8	Application of dilatometric analysis to the study of solid–solid phase transformations in steels. Materials Characterization, 2002, 48, 101-111.	4.4	212
9	The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures. Materials Transactions, 2005, 46, 1839-1846.	1.2	197
10	Design of novel high strength bainitic steels: Part 2. Materials Science and Technology, 2001, 17, 517-522.	1.6	182
11	Determination of Ms Temperature in Steels: A Bayesian Neural Network Model ISIJ International, 2002, 42, 894-902.	1.4	176
12	Carbon supersaturation of ferrite in a nanocrystalline bainitic steel. Acta Materialia, 2010, 58, 2338-2343.	7.9	168
13	Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon. Materials Science & Company; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 185-192.	5.6	168
14	Theoretical design and advanced microstructure in super high strength steels. Materials & Design, 2009, 30, 2077-2083.	5.1	164
15	Tempering of hard mixture of bainitic ferrite and austenite. Materials Science and Technology, 2004, 20, 814-818.	1.6	156
16	Dependence of martensite start temperature on fine austenite grain size. Scripta Materialia, 2008, 58, 134-137.	5.2	148
17	New experimental evidence on the incomplete transformation phenomenon in steel. Acta Materialia, 2009, 57, 8-17.	7.9	139
18	Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions. Wear, 2013, 298-299, 42-47.	3.1	131

#	Article	IF	CITATIONS
19	Redistribution of alloying elements during tempering of a nanocrystalline steel. Acta Materialia, 2008, 56, 188-199.	7.9	120
20	Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Materials Science and Technology, 2012, 28, 95-102.	1.6	114
21	Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Materials Characterization, 2002, 49, 121-127.	4.4	111
22	Mechanical Properties of Low-Temperature Bainite. Materials Science Forum, 2005, 500-501, 495-502.	0.3	109
23	Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Materials & Design, 2013, 49, 667-680.	5.1	104
24	Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels. Materials Characterization, 2001, 46, 389-398.	4.4	103
25	Examination of carbon partitioning into austenite during tempering of bainite. Scripta Materialia, 2010, 63, 442-445.	5.2	103
26	Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications. Materials Science and Technology, 2013, 29, 1166-1173.	1.6	96
27	Mathematical Modeling of Iron and Steel Making Processes. Modelling of Kinetics of Austenite Formation in Steels with Different Initial Microstructures ISIJ International, 2001, 41, 1093-1102.	1.4	95
28	Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality. Acta Materialia, 2015, 91, 162-173.	7.9	94
29	Effects of Morphology and Stability of Retained Austenite on the Ductility of TRIP-aided Bainitic Steels. ISIJ International, 2008, 48, 1256-1262.	1.4	90
30	Design of Advanced Bainitic Steels by Optimisation of TTT Diagrams and TO Curves. ISIJ International, 2006, 46, 1479-1488.	1.4	89
31	On measurement of carbon content in retained austenite in a nanostructured bainitic steel. Journal of Materials Science, 2012, 47, 1004-1010.	3.7	88
32	Toughness deterioration in advanced high strength bainitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 525, 87-95.	5.6	87
33	Modelling of kinetics and dilatometric behavior of non-isothermal pearlite-to-austenite transformation in an eutectoid steel. Scripta Materialia, 1998, 39, 791-796.	5.2	86
34	Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry. Scripta Materialia, 2009, 61, 855-858.	5.2	84
35	Temperature dependence of carbon supersaturation of ferrite in bainitic steels. Scripta Materialia, 2012, 67, 846-849.	5.2	83
36	Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels. Journal of Materials Science, 2009, 44, 4617-4624.	3.7	79

#	Article	IF	CITATIONS
37	An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels. Journal of Alloys and Compounds, 2013, 577, S43-S47.	5.5	79
38	Strengthening and mechanical stability mechanisms in nanostructured bainite. Journal of Materials Science, 2013, 48, 6121-6132.	3.7	76
39	Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Materials Characterization, 2016, 122, 83-89.	4.4	73
40	Analysis of effect of alloying elements on martensite start temperature of steels. Materials Science and Technology, 2003, 19, 581-586.	1.6	70
41	On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 630, 71-77.	5.6	70
42	Evolution of Microstructural Banding during the Manufacturing Process of Dual Phase Steels. Materials Transactions, 2006, 47, 2269-2276.	1.2	68
43	Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Materialia, 2011, 59, 6117-6123.	7.9	68
44	Nanostructured steel industrialisation: Plausible reality. Materials Science and Technology, 2014, 30, 1071-1078.	1.6	67
45	New experimental evidence of the diffusionless transformation nature of bainite. Journal of Alloys and Compounds, 2013, 577, S626-S630.	5.5	58
46	Design of Novel Bainitic Steels: Moving from UltraFine to Nanoscale Structures. Jom, 2014, 66, 747-755.	1.9	56
47	Quantitative assessment of carbon allocation anomalies in low temperature bainite. Acta Materialia, 2017, 133, 333-345.	7.9	56
48	Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels. Materials Science and Technology, 2015, 31, 1508-1520.	1.6	54
49	Microstructure evolution during tensile deformation of a nanostructured bainitic steel. Scripta Materialia, 2013, 69, 777-780.	5.2	53
50	Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM. Scientific Reports, 2015, 5, 17164.	3.3	52
51	Tensile Response of Two Nanoscale Bainite Composite-Like Structures. Jom, 2015, 67, 2223-2235.	1.9	48
52	Atom Probe Tomography Analysis of Precipitation during Tempering of a Nanostructured Bainitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3660-3668.	2.2	47
53	Kinetics and dilatometric behaviour of non-isothermal ferrite–austenite transformation. Materials Science and Technology, 2001, 17, 1114-1118.	1.6	46
54	Using Tournaments to Reduce Agency Problems: The Case of Franchising. Entrepreneurship Theory and Practice, 2011, 35, 427-447.	10.2	46

#	Article	IF	CITATIONS
55	Retained austenite thermal stability in a nanostructured bainitic steel. Materials Characterization, 2013, 81, 105-110.	4.4	45
56	Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1283-1291.	2.2	44
57	Thermoelectric power studies on a martensitic stainless steel. Scripta Materialia, 2004, 50, 1061-1066.	5.2	44
58	Characterization and morphological analysis of pearlite in a eutectoid steel. Materials Characterization, 2000, 45, 111-116.	4.4	43
59	Evaluation of Displacive Models for Bainite Transformation Kinetics in Steels. Materials Transactions, 2006, 47, 1492-1500.	1.2	43
60	Dilatometric characterization of pearlite dissolution in 0.1C-0.5Mn low carbon low manganese steel. Scripta Materialia, 1998, 38, 1835-1842.	5.2	41
61	Influence of V Precipitates on Acicular Ferrite Transformation Part 1: The Role of Nitrogen. ISIJ International, 2008, 48, 1270-1275.	1.4	41
62	Title is missing!. Journal of Materials Science, 2002, 37, 3533-3540.	3.7	40
63	Transferring Nanoscale Bainite Concept to Lower C Contents: A Perspective. Metals, 2017, 7, 159.	2.3	40
64	Design of carbide-free low-temperature ultra high strength bainitic steels. International Journal of Materials Research, 2007, 98, 137-143.	0.3	39
65	Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel. Materials Science and Technology, 2008, 24, 266-272.	1.6	39
66	Distribution of Dislocations in Nanostructured Bainite. Solid State Phenomena, 0, 172-174, 117-122.	0.3	39
67	Influence of scale parameters of pearlite on the kinetics of anisothermal pearlite-to-austenite transformation in a eutectoid steel. Scripta Materialia, 2000, 42, 1159-1165.	5.2	38
68	Reciprocating-sliding wear behavior of nanostructured and ultra-fine high-silicon bainitic steels. Wear, 2015, 338-339, 202-209.	3.1	37
69	Carbon concentration measurements by atom probe tomography in the ferritic phase of high-silicon steels. Acta Materialia, 2017, 125, 359-368.	7.9	37
70	Effect of ausforming on the anisotropy of low temperature bainitic transformation. Materials Characterization, 2018, 145, 371-380.	4.4	36
71	Modeling of the interlamellar spacing of isothermally formed pearlite in a eutectoid steel. Scripta Materialia, 2000, 42, 537-542.	5.2	35
72	Stress or strain induced martensitic and bainitic transformations during ausforming processes. Acta Materialia, 2020, 189, 60-72.	7.9	35

#	Article	IF	CITATIONS
73	Neural network analysis of the influence of processing on strength and ductility of automotive low carbon sheet steels. Computational Materials Science, 2006, 38, 192-201.	3.0	34
74	Ductility of Nanostructured Bainite. Metals, 2016, 6, 302.	2.3	34
75	Low temperature bainite. European Physical Journal Special Topics, 2003, 112, 285-288.	0.2	33
76	Dilatometric Study of Reaustenitisation of High Silicon Bainitic Steels: Decomposition of Retained Austenite. Materials Transactions, 2005, 46, 581-586.	1.2	32
77	New Model for the Overall Transformation Kinetics of Bainite. Part 1: the Model. Materials Transactions, 2006, 47, 2465-2472.	1.2	32
78	Effect of V and N Precipitation on Acicular Ferrite Formation in Sulfur-Lean Vanadium Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 522-538.	2.2	32
79	The Role of Inclusions and Austenite Grain Size on Intragranular Nucleation of Ferrite in Medium Carbon Microalloyed Steels. Materials Transactions, 2004, 45, 2678-2685.	1.2	31
80	Comparison of the annealing behaviour between cold and warm rolled ELC steels by thermoelectric power measurements. Acta Materialia, 2007, 55, 2075-2083.	7.9	31
81	Influence of transformation temperature on carbide precipitation sequence during lower bainite formation. Materials Chemistry and Physics, 2014, 146, 50-57.	4.0	30
82	Induced martensitic transformation during tensile test in nanostructured bainitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 169-177.	5.6	30
83	Interpretation of a dilatometric anomaly previous to the ferrite-to-austenite transformation in a low carbon steel. Scripta Materialia, 2006, 54, 949-954.	5.2	29
84	High hardness and retained austenite stability in Si-bearing hypereutectoid steel through new heat treatment design principles. Materials and Design, 2018, 142, 279-287.	7.0	29
85	Tracking solute atoms during bainite reaction in a nanocrystalline steel. Materials Science and Technology, 2010, 26, 889-898.	1.6	28
86	Evaluation and review of simultaneous transformation model in high strength low alloy steels. Materials Science and Technology, 2002, 18, 534-540.	1.6	27
87	Advanced Ultrahigh Strength Bainitic Steels. Materials and Manufacturing Processes, 2007, 22, 502-506.	4.7	27
88	Artificial neural network modeling for the prediction of critical transformation temperatures in steels. Journal of Materials Science, 2007, 42, 5391-5397.	3.7	27
89	Modelling of isothermal ferrite formation using an analytical treatment of soft impingement in 0.37C–1.45Mn–0.11V microalloyed steel. Scripta Materialia, 1998, 39, 853-859.	5.2	26
90	Austenite Grain Coarsening Under the Influence of Niobium Carbonitrides. Materials Transactions, 2004, 45, 2797-2804.	1.2	26

#	Article	IF	CITATIONS
91	New approach for the bainite start temperature calculation in steels. Materials Science and Technology, 2005, 21, 934-940.	1.6	26
92	An Attempt to Establish the Variables That Most Directly Influence the Austenite Formation Process in Steels. ISIJ International, 2003, 43, 726-735.	1.4	25
93	The Influence of Heat Treatment on the Microstructure and Machinability of a Prehardened Mold Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2157-2171.	2.2	25
94	A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels. Materials, 2016, 9, 831.	2.9	25
95	Tensile Ductility of Nanostructured Bainitic Steels: Influence of Retained Austenite Stability. Metals, 2017, 7, 31.	2.3	25
96	Composition design of nanocrystalline bainitic steels by diffusionless solid reaction. Metals and Materials International, 2014, 20, 405-415.	3.4	24
97	Kinetics model of isothermal pearlite formation in a 0.4C–1.6Mn steel. Acta Materialia, 2002, 50, 4629-4641.	7.9	23
98	The origin of splitting phenomena in the martensitic transformation of stainless steels. Scripta Materialia, 2003, 49, 315-320.	5.2	23
99	Time-Temperature-Transformation Diagram within the Bainitic Temperature Range in a Medium Carbon Steel. Materials Transactions, 2004, 45, 3272-3281.	1.2	23
100	Determination of local carbon content in austenite during intercritical annealing of dual phase steels by PEELS analysis. Scripta Materialia, 2007, 57, 89-92.	5.2	23
101	Modeling of kinetics of austenite-to-allotriomorphic ferrite transformation in 0.37C-1.45Mn-0.11V microalloyed steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 661-669.	2.2	22
102	Austenite retention in low Al/Si multiphase steels. Scripta Materialia, 2006, 55, 441-443.	5.2	22
103	The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3985-3996.	2.2	22
104	Low-Temperature Bainite: A Thermal Stability Study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2026-2036.	2.2	22
105	Incubation time of isothermally transformed allotriomorphic ferrite in medium carbon steels. Scripta Materialia, 2001, 44, 129-134.	5.2	21
106	Carbon Clustering in Low-Temperature Bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5277-5287.	2.2	21
107	Industrialised nanocrystalline bainitic steels. Design approach. International Journal of Materials Research, 2014, 105, 725-734.	0.3	20
108	Opening previously impossible avenues for phase transformation in innovative steels by atom probe tomography. Materials Science and Technology, 2014, 30, 1034-1039.	1.6	20

#	Article	IF	Citations
109	Precipitation of M23C6 carbides: thermoelectric power measurements. Scripta Materialia, 2005, 52, 501-505.	5.2	19
110	Improving wear resistance of steels through nanocrystalline structures obtained by bainitic transformation. Materials Science and Technology, 2016, 32, 308-312.	1.6	19
111	Crystallographic examination of the interaction between texture evolution, mechanically induced martensitic transformation and twinning in nanostructured bainite. Journal of Alloys and Compounds, 2018, 752, 505-519.	5.5	19
112	Use of titanium and zirconium in centrifugally cast heat resistant steel. Materials Science and Technology, 2007, 23, 528-534.	1.6	18
113	Effect of V Precipitation on Continuously Cooled Sulfur-Lean Vanadium-Alloyed Steels for Long Products Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3743-3751.	2.2	18
114	Three phase crystallography and solute distribution analysis during residual austenite decomposition in tempered nanocrystalline bainitic steels. Materials Characterization, 2014, 88, 15-20.	4.4	18
115	Retained Austenite Destabilization during Tempering of Low-Temperature Bainite. Applied Sciences (Switzerland), 2020, 10, 8901.	2.5	18
116	Assessing the scale contributing factors of three carbide-free bainitic steels: A complementary theoretical and experimental approach. Materials and Design, 2021, 197, 109217.	7.0	18
117	Phase transformation theory: A powerful tool for the design of advanced steels. Jom, 2008, 60, 16-21.	1.9	17
118	Assessment of blasting induced effects on medical 316 LVM stainless steel by contacting and non-contacting thermoelectric power techniques. Surface and Coatings Technology, 2012, 206, 2941-2946.	4.8	17
119	An integrated-model for austenite yield strength considering the influence of temperature and strain rate in lean steels. Materials and Design, 2020, 188, 108435.	7.0	17
120	Significance of the contacting and no contacting thermoelectric power measurements applied to grit blasted medical Ti6Al4V. Materials Science and Engineering C, 2013, 33, 1417-1422.	7.3	16
121	Vanadium Effect on a Medium Carbon Forging Steel. Metals, 2016, 6, 130.	2.3	16
122	Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite. Materials and Design, 2021, 211, 110143.	7.0	16
123	Isothermal allotriomorphic ferrite formation kinetics in a medium carbon vanadium-titanium microalloyed steel. Scripta Materialia, 2001, 44, 593-600.	5.2	15
124	Modern steels at atomic and nanometre scales. Materials Science and Technology, 2015, 31, 764-772.	1.6	15
125	Positron Annihilation Spectroscopy Study of Carbon-Vacancy Interaction in Low-Temperature Bainite. Scientific Reports, 2020, 10, 487.	3.3	15
126	Influence of Microalloying Elements on Recrystallization Texture of Warm-Rolled Interstitial Free Steels. Materials Transactions, 2010, 51, 625-634.	1.2	14

#	Article	ΙF	Citations
127	Quantitative Assessment of the Time to End Bainitic Transformation. Metals, 2019, 9, 925.	2.3	14
128	Modeling of kinetics of isothermal idiomorphic ferrite formation in a medium-carbon vanadium-titanium microalloyed steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1591-1597.	2.2	13
129	Design of Novel High-Strength Bainitic Steels. Materials Science Forum, 2003, 426-432, 1337-1342.	0.3	13
130	Austenite Grain Size Effects on Isothermal Allotriomorphic Ferrite Formation in 0.37C-1.45Mn-0.11V Microalloyed Steel. Materials Transactions, 2003, 44, 1087-1095.	1.2	13
131	The approach to equilibrium during tempering of a bulk nanocrystalline steel: an atom probe investigation. Journal of Materials Science, 2008, 43, 3769-3774.	3.7	13
132	The Influence of Austenitization Temperature on the Mechanical Properties of a Prehardened Mould Steel. Materials Science Forum, 0, 706-709, 2140-2145.	0.3	13
133	A study of changes taking place in Cu–Cr–Zr alloy during severe plastic deformation and annealing as evaluated by thermoelectric power measurements. Scripta Materialia, 2012, 67, 806-809.	5.2	13
134	New Model for the Overall Transformation Kinetics of Bainite. Part 2: Validation. Materials Transactions, 2006, 47, 2473-2479.	1.2	12
135	Effect of molybdenum on continuous cooling transformations in two medium carbon forging steels. Journal of Materials Science, 2001, 36, 565-571.	3.7	11
136	Neural Network Model for Isothermal Pearlite Transformation. Part I: Interlamellar Spacing. ISIJ International, 2005, 45, 229-237.	1.4	11
137	Influence of V Precipitates on Acicular Ferrite Transformation Part 2: Transformation Kinetics. ISIJ International, 2008, 48, 1276-1279.	1.4	11
138	Global recrystallisation model of low carbon sheet steels with different cementite contents. Materials Science & Department of the Science and Processing, 2009, 519, 9-18.	5.6	11
139	Carbide-free bainite in steels. , 2012, , 436-467.		11
140	Exploring Carbide-Free Bainitic Structures for Hot Dip Galvanizing Products. ISIJ International, 2013, 53, 1253-1259.	1.4	11
141	The effect of thermal aging on the strength and the thermoelectric power of the Ti-6Al-4V alloy. Physical Mesomechanics, 2017, 20, 447-456.	1.9	11
142	Advanced vanadium alloyed steel for heavy product applications. Materials Science and Technology, 2009, 25, 1383-1386.	1.6	10
143	Toughness of Advanced High Strength Bainitic Steels. Materials Science Forum, 0, 638-642, 118-123.	0.3	10
144	The role of silicon, vacancies, and strain in carbon distribution in low temperature bainite. Journal of Alloys and Compounds, 2016, 673, 289-294.	5 . 5	10

#	Article	IF	CITATIONS
145	Influence of Deformation and Molybdenum Content on Acicular Ferrite Formation in Medium Carbon Steels. ISIJ International, 2006, 46, 1093-1100.	1.4	10
146	Advanced High Strength Bainitic Steels. , 2014, , 165-190.		9
147	Future Trends on Displacive Stress and Strain Induced Transformations in Steels. Metals, 2021, 11, 299.	2.3	9
148	Bainitic Ferrite Plate Thickness Evolution in Two Nanostructured Steels. Materials, 2021, 14, 4347.	2.9	9
149	The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel. Journal of Materials Science, 2012, 47, 3613-3620.	3.7	8
150	Understanding Mechanical Properties of Nano-Grained Bainitic Steels from Multiscale Structural Analysis. Metals, 2019, 9, 426.	2.3	8
151	A New Systematic Approach Based on Dilatometric Analysis to Track Bainite Transformation Kinetics and the Influence of the Prior Austenite Grain Size. Metals, 2021, 11, 324.	2.3	8
152	Modelling of isothermal formation of pearlite and subsequent reaustenitisation in eutectoid steel during continuous heating. Materials Science and Technology, 2001, 17, 686-692.	1.6	7
153	Neural Network Model for Isothermal Pearlite Transformation. Part II: Growth Rate. ISIJ International, 2005, 45, 238-247.	1.4	7
154	Influence of Second Phase Particles on Recrystallisation of Cold-Rolled Low Carbon Microalloyed Steels during Isothermal Annealing. Materials Science Forum, 2005, 500-501, 803-0.	0.3	7
155	Hot Forming of Ultra-Fine-Grained Multiphase Steel Products Using Press Hardening Combined with Quenching and Partitioning Process. Metals, 2019, 9, 357.	2.3	7
156	Relevant aspects of allotriomorphic and idiomorphic ferrite transformation kinetics. Materials Science and Technology, 2003, 19, 195-201.	1.6	6
157	Influence of processing parameters on the recrystallized microstructure of extra-low-carbon steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2059-2068.	2.2	6
158	Slow Bainite: an Opportunity to Determine the Carbon Content of the Bainitic Ferrite during Growth. Solid State Phenomena, 0, 172-174, 111-116.	0.3	6
159	Determination of hot and cold rolling textures of steels: Combined Bayesian neural network model. Materials Science and Technology, 2012, 28, 321-333.	1.6	6
160	A procedure for indirect and automatic measurement of prior austenite grain size in bainite/martensite microstructures. Journal of Materials Science, 2015, 50, 258-267.	3.7	6
161	Effect of Ausforming on the Macro- and Micro-texture of Bainitic Microstructures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4033-4052.	2.2	6
162	Effect of titanium on the allotriomorphic ferrite transformation kinetics in medium carbon–manganese steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 328, 156-160.	5.6	5

#	Article	IF	CITATIONS
163	Evaluation of the Austenitic Grain Growth by Thermoelectric Power Measurements. Materials Science Forum, 2004, 467-470, 863-868.	0.3	5
164	Neural network model for improvement of strength–ductility compromise in low carbon sheet steels. Materials Science and Technology, 2006, 22, 1163-1170.	1.6	5
165	Phase transformations in advanced bainitic steels. , 2012, , 271-294.		5
166	Complex Microstructural Banding of Continuously Cooled Carbide-Free Bainitic Steels. Materials Science Forum, 0, 783-786, 980-985.	0.3	5
167	Detailed characterization of complex banding in air-cooled bainitic steels. Journal of Mining and Metallurgy, Section B: Metallurgy, 2015, 51, 25-32.	0.8	5
168	Title is missing!. Journal of Materials Science Letters, 2001, 20, 1135-1137.	0.5	4
169	Discussion on the Rate Controlling Process of Coarsening of Niobium Carbonitrides in a Niobium Microalloyed Steel. Materials Science Forum, 2005, 500-501, 703-710.	0.3	4
170	Recrystallisation and dilatometric behaviour of low carbon and ultralow carbon steels. Materials Science and Technology, 2008, 24, 832-837.	1.6	4
171	Application of thermoelectric power measurements to the study of cold rolled austenitic stainless steels. Journal of Materials Science, 2009, 44, 4499-4502.	3.7	4
172	The processing of nanocrystalline steels by solid reaction. , 2011, , 85-117.		4
173	Bainitic Steel: Nanostructured. , 2016, , 271-290.		4
174	Retained Austenite: Stability in a Nanostructured Bainitic Steel., 2016,, 3077-3087.		4
175	Effect of the Microsegregation on Martensitic and Bainitic Reactions in a High Carbon-High Silicon Cast Steel. Metals, 2020, 10, 574.	2.3	4
176	Effect of Microsegregation and Bainitic Reaction Temperature on the Microstructure and Mechanical Properties of a High-Carbon and High-Silicon Cast Steel. Metals, 2021, 11, 220.	2.3	4
177	The role of plastic strains on variant selection in ausformed bainitic microstructures studied by finite elements and crystal plasticity simulations. Journal of Materials Research and Technology, 2021, 13, 1416-1430.	5.8	4
178	Austenización de aceros con microestructuras diferentes. Revista De Metalurgia, 2004, 40, 214-218.	0.5	4
179	Reply to comments on kinetics model of isothermal pearlite formation in a 0.4C–1.6Mn steel. Scripta Materialia, 2004, 50, 175-177.	5.2	3
180	A New Approach on the Modelling of Isothermal Recrystallisation in Cold Rolled Ferritic Steels: An Application to Back-Annealing of Low Carbon Sheet Steels. Materials Transactions, 2008, 49, 2292-2297.	1.2	3

#	Article	IF	CITATIONS
181	Evolution of Microstructure and Mechanical Properties during Tempering of Continuously Cooled Bainitic Steels. Materials Science Forum, 0, 706-709, 2308-2313.	0.3	3
182	Nanoengineering in the modern steel industry. Materials Science and Technology, 2013, 29, 1149-1151.	1.6	3
183	Assessing the implementation of machine learning models for thermal treatments design. Materials Science and Technology, 2021, 37, 1302-1310.	1.6	3
184	Effect of the Microalloying Elements on Nucleation and Growth Kinetics of Allotriomorphic Ferrite in Medium Carbon-Manganese Steels. Materials Science Forum, 1998, 284-286, 231-236.	0.3	2
185	Kinetics of Austenite Grain Growth during a Continuous Heating of a Niobium Microalloyed Steel. Materials Science Forum, 2004, 467-470, 929-934.	0.3	2
186	Influence of austenite grain size on overaging treatment of continuous annealed dual phase steels. Materials Science and Technology, 2007, 23, 671-676.	1.6	2
187	Solute Trapped at Defects during the Displacive Formation of Bainitic Ferrite. Microscopy and Microanalysis, 2007, 13, .	0.4	2
188	Bainitic Steels: Tempering. , 2016, , 1-14.		2
189	Complex Nano-Scale Structures for Unprecedented Properties in Steels. Materials Science Forum, 0, 879, 2401-2406.	0.3	2
190	Correlation of Fatigue Limit and Crack Growth Threshold Value to the Nanobainitic Microstructure. Solid State Phenomena, 0, 258, 314-317.	0.3	2
191	Proposal of an empirical formula for the austenitising temperature. Materials Science & Description of the Ambier	5.6	2
192	Proposition of Two Parameters for a Good Characterisation of the Austenitising Condition of Microalloyed Steels. Materials Science Forum, 2003, 426-432, 1611-1618.	0.3	1
193	The Influence of Titanium and Vanadium on Isothermal Growth Kinetics of Allotriomorphic Ferrite in Medium Carbon Microalloyed Steels. Materials Transactions, 2003, 44, 220-225.	1.2	1
194	Modelling the Influence of Cementite on Static Recrystallisation in Cold-Rolled Low-Carbon Steels. Materials Science Forum, 2007, 550, 595-600.	0.3	1
195	Foreword: Symposium on Austenite Formation and Decomposition IV. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3590-3590.	2.2	1
196	Nondestructive thermoelectric evaluation of the grit blasting induced effects in metallic biomaterials. , 2013, , .		1
197	Bainitic Steel: Transformation Mechanisms and Properties. , 2016, , 291-305.		1
198	Advanced Heat Treatments and Complex Ferritic Structures for Bearing Steels. Metals, 2019, 9, 1137.	2.3	1

#	Article	IF	CITATIONS
199	Explaining the dilatometric behavior during bainite transformation under the effect of variant selection. Journal of Alloys and Compounds, 2021, 864, 158130.	5.5	1
200	Super-Bainite. , 2022, , 73-83.		1
201	Alteration of O-J-I-P Chlorophyll Induction Kinetics by Dichromate: An Effect on the Water-Splitting System., 2008,, 661-665.		1
202	Modelización de la formación isotérmica de ferrita alotriomórfica a temperaturas inferiores a la del eutectoide en un acero microaleado de medio carbono. Revista De Metalurgia, 2001, 37, 509-518.	0.5	1
203	Diseño de nuevos aceros bainÃŧicos Revista De Metalurgia, 2002, 38, 3-13.	0.5	1
204	Study and modelling of the influence of second phase particles on the austenite grain growth in a niobium microalloyed steel. Revista De Metalurgia, 2006, 42, .	0.5	1
205	Title is missing!. Metallurgist, 2001, 45, 72-78.	0.6	0
206	Influence of chemical composition and processing conditions on interstitial content of cold rolled ferritic steels. Materials Science and Technology, 2011, 27, 1143-1148.	1.6	0
207	Martensite and bainite in nanocrystalline steels: understanding, design and applications. MATEC Web of Conferences, 2015, 33, 01003.	0.2	O
208	Control de la descomposición anisotérmica de la austenita en ferrita acicular buscando la combinación óptima de propiedades mecánicas en un acero microaleado de forja. Revista De Metalurgia, 2001, 37, 240-244.	0.5	0
209	Modelización del proceso de austenización de un acero eutectoide. Revista De Metalurgia, 2001, 37, 573-581.	0.5	0
210	Modelización de la formación isotérmica de ferrita idiomórfica en aceros de medio carbono microaleados con vanadio-titanio. Revista De Metalurgia, 2002, 38, 183-194.	0.5	0
211	Prediction of martensite start temperature by neural network analysis. European Physical Journal Special Topics, 2003, 112, 217-221.	0.2	0
212	Characterization of Grit Blasted Metallic Biomaterials by Thermoelectric Power Measurements. , 0, , 443-450.		0
213	Nanostructured Steels., 2021,, 327-387.		O