Roger Bilham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5051509/publications.pdf

Version: 2024-02-01

133	11,651	55 h-index	105
papers	citations		g-index
138	138	138	7131 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Buried Aseismic Slip and Offâ€Fault Deformation on the Southernmost San Andreas Fault Triggered by the 2010 El Mayor Cucapah Earthquake Revealed by UAVSAR. Earth and Space Science, 2021, 8, e2021EA001682.	1.1	1
2	Active Steadyâ€State Creep on A Nontectonic Normal Fault in Southeast Utah: Implications for Strain Release in a Rapidly Deforming Salt System. Geophysical Research Letters, 2020, 47, e2020GL087081.	1.5	1
3	The July 2019 Ridgecrest, California, Earthquake Sequence Recorded by Creepmeters: Negligible Epicentral Afterslip and Prolonged Triggered Slip at Teleseismic Distances. Seismological Research Letters, 2020, 91, 707-720.	0.8	12
4	Slow Slip Event On the Southern San Andreas Fault Triggered by the 2017 <i>M</i> _{<i>w</i>} 8.2 Chiapas (Mexico) Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 9956-9975.	1.4	46
5	Shallow Creep Along the 1999 Izmit Earthquake Rupture (Turkey) From GPS and High Temporal Resolution Interferometric Synthetic Aperture Radar Data (2011–2017). Journal of Geophysical Research: Solid Earth, 2019, 124, 2218-2236.	1.4	37
6	Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geological Society Special Publication, 2019, 483, 423-482.	0.8	190
7	The 1892 Chaman, Pakistan, Earthquake. Seismological Research Letters, 2019, 90, 2293-2303.	0.8	4
8	Poroelastic stress changes associated with primary oil production in the Los Angeles Basin, California. The Leading Edge, 2018, 37, 108-116.	0.4	4
9	Revisiting Earthquakes in the Los Angeles, California, Basin During the Early Instrumental Period: Evidence for an Association With Oil Production. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,684.	1.4	6
10	Implications for elastic energy storage in the Himalaya from the Gorkha 2015 earthquake and other incomplete ruptures of the Main Himalayan Thrust. Quaternary International, 2017, 462, 3-21.	0.7	80
11	Do weak global stresses synchronize earthquakes?. Geophysical Research Letters, 2017, 44, 8320-8327.	1.5	42
12	Darwin's First Theory: Exploring Darwin's Quest for a Theory of Earth. Seismological Research Letters, 2017, 88, 1566-1567.	0.8	0
13	New Constraints on the Mechanism and Rupture Area for the 1905 MwÂ7.8 Kangra Earthquake, Northwest Himalaya. Bulletin of the Seismological Society of America, 2017, 107, 2467-2479.	1.1	21
14	Changes in absolute gravity 2000–2015, South Island, New Zealand. New Zealand Journal of Geology, and Geophysics, 2016, 59, 176-186.	1.0	3
15	Surface creep on the North Anatolian Fault at Ismetpasa, Turkey, 1944–2016. Journal of Geophysical Research: Solid Earth, 2016, 121, 7409-7431.	1.4	55
16	Himalayan strain reservoir inferred from limited afterslip following the Gorkha earthquake. Nature Geoscience, 2016, 9, 533-537.	5.4	79
17	Postseismic relaxation in Kashmir and lateral variations in crustal architecture and materials. Geophysical Research Letters, 2015, 42, 4375-4383.	1.5	6
18	Dynamic triggering of creep events in the Salton Trough, Southern California by regional <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">M</mml:mi><mml:mo>â%¥</mml:mo><mml:mn>5.4</mml:mn></mml:math> earthquak constrained by geodetic observations and numerical simulations. Earth and Planetary Science Letters, 2015, 427, 1-10.	8. E 9	38

#	Article	IF	CITATIONS
19	Abrupt magma chamber contraction and microseismicity at Campi Flegrei, Italy: Cause and effect determined from strainmeters and tiltmeters. Journal of Geophysical Research: Solid Earth, 2015, 120, 5467-5478.	1.4	23
20	The Shillong Plateau and the great 1897 Assam earthquake. Tectonics, 2015, 34, 1792-1812.	1.3	45
21	Mmax., 2015,, 119-140.		7
22	Raising Kathmandu. Nature Geoscience, 2015, 8, 582-584.	5.4	77
23	Aggravated Earthquake Risk in South Asia. , 2014, , 103-141.		12
24	Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau. Journal of Geophysical Research: Solid Earth, 2014, 119, 6558-6571.	1.4	162
25	A ninth century earthquake-induced landslide and flood in the Kashmir Valley, and earthquake damage to Kashmir's Medieval temples. Bulletin of Earthquake Engineering, 2014, 12, 79-109. Ball-and-socket tectonic rotation during the 2013 <mml:math< td=""><td>2.3</td><td>36</td></mml:math<>	2.3	36
26	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:msub><mml:mrow><mml:mi mathvariant="normal">M</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">w</mml:mi></mml:mrow></mml:msub> <mml:mn>7.7</mml:mn> Balochistar	1.8	40
27	earthquake. Earth and Planetary Science Letters, 2014, 403, 210-216. Localized and distributed creep along the southern San Andreas Fault. Journal of Geophysical Research: Solid Earth, 2014, 119, 7909-7922.	1.4	82
28	Remote sensing and the search for surface rupture, Haiti 2010. Natural Hazards, 2013, 68, 213-217.	1.6	4
29	Oldham's Lost Fault. Seismological Research Letters, 2013, 84, 702-710.	0.8	17
30	Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene, 2013, 3, 24-35.	1.6	58
31	Societal and observational problems in earthquake risk assessments and their delivery to those most at risk. Tectonophysics, 2013, 584, 166-173.	0.9	19
32	Report on the August 2012 Brawley Earthquake Swarm in Imperial Valley, Southern California. Seismological Research Letters, 2013, 84, 177-189.	0.8	48
33	Nailing down the slip rate of the Altyn Tagh fault. Geophysical Research Letters, 2013, 40, 5382-5386.	1.5	62
34	Buildings as Weapons of Mass Destruction. Science, 2013, 341, 618-619.	6.0	20
35	Seismic slip deficit in the Kashmir Himalaya from GPS observations. Geophysical Research Letters, 2013, 40, 5642-5645.	1.5	110
36	Long-Term Creep Rates on the Hayward Fault: Evidence for Controls on the Size and Frequency of Large Earthquakes. Bulletin of the Seismological Society of America, 2012, 102, 31-41.	1.1	45

#	Article	IF	CITATIONS
37	Stick–slip advance of the Kohat Plateau in Pakistan. Nature Geoscience, 2012, 5, 147-150.	5.4	29
38	The Sarez-Pamir Earthquake and Landslide of 18 February 1911. Seismological Research Letters, 2012, 83, 294-314.	0.8	37
39	Interseismic strain accumulation along the western boundary of the Indian subcontinent. Journal of Geophysical Research, $2012,117,.$	3.3	69
40	Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	68
41	Corruption kills. Nature, 2011, 469, 153-155.	13.7	178
42	The door knockers of Mansurah: Strong shaking in a region of low perceived seismic risk, Sindh, Pakistan. , 2010 , , .		5
43	Lessons from the Haiti earthquake. Nature, 2010, 463, 878-879.	13.7	175
44	Invisible faults under shaky ground. Nature Geoscience, 2010, 3, 743-745.	5.4	12
45	Intensity, Magnitude, Location, and Attenuation in India for Felt Earthquakes since 1762. Bulletin of the Seismological Society of America, 2010, 100, 570-584.	1.1	170
46	Partitioning of Indiaâ€Eurasia convergence in the Pamirâ€Hindu Kush from GPS measurements. Geophysical Research Letters, 2010, 37, .	1.5	110
47	Historical earthquakes in Srinagar, Kashmir: Clues from the Shiva Temple at Pandrethan. , 2010, , .		30
48	The seismic future of cities. Bulletin of Earthquake Engineering, 2009, 7, 839-887.	2.3	158
49	Fold and thrust partitioning in a contracting fold belt: Insights from the 1931 Mach earthquake in Baluchistan. Tectonics, 2009, 28, .	1.3	25
50	Kashmir Valley Megaearthquakes. American Scientist, 2009, 97, 1.	0.1	7
51	Tsunamigenic Middle Earth. Nature Geoscience, 2008, 1, 211-212.	5.4	3
52	Tom La Touche and the Great Assam Earthquake of 12 June 1897: Letters from the Epicenter. Seismological Research Letters, 2008, 79, 426-437.	0.8	12
53	Miocene rise of the Shillong Plateau and the beginning of the end for the Eastern Himalaya. Earth and Planetary Science Letters, 2008, 269, 337-351.	1.8	120
54	Interaction Between the Himalaya and the Flexed Indian Plateâ€"Spatial Fluctuations in Seismic Hazard in India in the Past Millennium?. AIP Conference Proceedings, 2008, , .	0.3	4

#	Article	IF	CITATIONS
55	Seismic Hazard in Karachi, Pakistan: Uncertain Past, Uncertain Future. Seismological Research Letters, 2007, 78, 601-613.	0.8	75
56	Slip on an active wedge thrust from geodetic observations of the 8 October 2005 Kashmir earthquake. Geology, 2007, 35, 267.	2.0	57
57	Postseismic deformation of the Andaman Islands following the 26 December, 2004 Great Sumatra–Andaman earthquake. Geophysical Research Letters, 2007, 34, .	1.5	54
58	Comment on "Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake―by C. P. Rajendran et al Tectonics, 2006, 25, n/a-n/a.	1.3	12
59	Geodetic constraints on the Bhuj 2001 earthquake and surface deformation in the Kachchh Rift Basin. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	14
60	Distributed Nubia-Somalia relative motion and dike intrusion in the Main Ethiopian Rift. Geophysical Journal International, 2006, 165, 303-310.	1.0	77
61	Great Himalayan earthquakes and the Tibetan plateau. Nature, 2006, 444, 165-170.	13.7	156
62	Surface deformation and subsurface slip of the 28 March 1999Mw= 6.4 west Himalayan Chamoli earthquake from InSAR analysis. Geophysical Research Letters, 2006, 33, .	1.5	39
63	GEOPHYSICS: Dangerous Tectonics, Fragile Buildings, and Tough Decisions. Science, 2006, 311, 1873-1875.	6.0	11
64	Imaging the Indian subcontinent beneath the Himalaya. Nature, 2005, 435, 1222-1225.	13.7	419
65	Wagon Loads of Sand Blows in White County, Illinois. Seismological Research Letters, 2005, 76, 373-386.	0.8	21
66	Coseismic Strain and the Transition to Surface Afterslip Recorded by Creepmeters near the 2004 Parkfield Epicenter. Seismological Research Letters, 2005, 76, 49-57.	0.8	21
67	A Flying Start, Then a Slow Slip. Science, 2005, 308, 1126-1127.	6.0	151
68	Partial and Complete Rupture of the Indo-Andaman Plate Boundary 1847-2004. Seismological Research Letters, 2005, 76, 299-311.	0.8	181
69	Surface deformation in the region of the 1905 Kangra Mw = 7.8 earthquake in the period 1846–2001. Geophysical Research Letters, 2005, 32, .	1.5	67
70	After the Earth Quakes. , 2005, , .		6
71	California Creepmeters. Seismological Research Letters, 2004, 75, 481-492.	0.8	28
72	Urban Earthquake Fatalities: A Safer World, or Worse to Come?. Seismological Research Letters, 2004, 75, 706-712.	0.8	34

#	Article	IF	CITATIONS
73	Analysing the 1811–1812 New Madrid earthquakes with recent instrumentally recorded aftershocks. Nature, 2004, 429, 284-288.	13.7	78
74	Inescapable slow slip on the Altyn Tagh fault. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	85
75	Flexure of the Indian plate and intraplate earthquakes. Journal of Earth System Science, 2003, 112, 315-329.	0.6	62
76	Source area and rupture parameters of the 31 December $1881 \text{Mw} = 7.9$ Car Nicobar earthquake estimated from tsunamis recorded in the Bay of Bengal. Journal of Geophysical Research, 2003, 108, .	3.3	111
77	A large silent earthquake in the Guerrero seismic gap, Mexico. Geophysical Research Letters, 2003, 30, .	1.5	232
78	Earthquakes in Afghanistan. Seismological Research Letters, 2003, 74, 107-123.	0.8	80
79	The 26 January 2001 M 7.6 Bhuj, India, Earthquake: Observed and Predicted Ground Motions. Bulletin of the Seismological Society of America, 2002, 92, 2061-2079.	1.1	84
80	Present-day crustal movement and tectonic deformation in China continent. Science in China Series D: Earth Sciences, 2002, 45, 865-874.	0.9	35
81	The motion and active deformation of India. Geophysical Research Letters, 2001, 28, 647-650.	1.5	253
82	The Hindu Kush Seismic Zone as a Paradigm for the Creation of Ultrahighâ€Pressure Diamond―and Coesiteâ€Bearing Continental Rocks. Journal of Geology, 2001, 109, 143-153.	0.7	82
83	Velocity field across the Southern Caribbean Plate Boundary and estimates of Caribbean/South-American Plate Motion using GPS Geodesy 1994-2000. Geophysical Research Letters, 2001, 28, 2987-2990.	1.5	103
84	Transient fault slip in Guerrero, southern Mexico. Geophysical Research Letters, 2001, 28, 3753-3756.	1.5	172
85	Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 2001, 294, 574-577.	6.0	990
86	Slow tilt reversal of the Lesser Himalaya between 1862 and 1992 at 78oE, and bounds to the southeast rupture of the 1905 Kangra earthquake. Geophysical Journal International, 2001, 144, 713-728.	1.0	43
87	Plateau â€~pop-up' in the great 1897 Assam earthquake. Nature, 2001, 410, 806-809.	13.7	426
88	The 26 January 2001 "Republic Day" Earthquake, India. Seismological Research Letters, 2001, 72, 328-335.	0.8	81
89	GPS estimate of relative motion between the Caribbean and South American plates, and geologic implications for Trinidad and Venezuela. Geology, 2001, 29, 75.	2.0	158
90	EARTHQUAKES: Himalayan Seismic Hazard. Science, 2001, 293, 1442-1444.	6.0	549

#	Article	IF	CITATIONS
91	How perfect is the Himalayan arc?. Geology, 2001, 29, 791.	2.0	76
92	Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature, 2000, 404, 69-72.	13.7	227
93	The morphology of thrust faulting in the 21 September 1999, Chichi, Taiwan earthquake. Journal of Asian Earth Sciences, 2000, 18, 351-367.	1.0	47
94	The tectonic and geomagnetic significance of paleomagnetic observations from volcanic rocks from central Afar, Africa. Earth and Planetary Science Letters, 2000, 180, 225-241.	1.8	38
95	GPS geodetic constraints on Caribbean-North America Plate Motion. Geophysical Research Letters, 2000, 27, 437-440.	1.5	288
96	Slip parameters for the Rann of Kachchh, India, 16 June 1819, earthquake, quantified from contemporary accounts. Geological Society Special Publication, 1999, 146, 295-319.	0.8	64
97	Search for buckling of the southwest Indian coast related to Himalayan collision. , 1999, , .		12
98	Secular and tidal strain across the Main Ethiopian Rift. Geophysical Research Letters, 1999, 26, 2789-2792.	1.5	131
99	Kinematics of the India-Eurasia collision zone from GPS measurements. Journal of Geophysical Research, 1999, 104, 1077-1093.	3.3	322
100	Subsurface creep on the Hayward Fault, Fremont, California. Geophysical Research Letters, 1997, 24, 1307-1310.	1.5	16
101	GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 1997, 386, 61-64.	13.7	641
102	Global Positioning System measurements of Indian Plate Motion and convergence across the lesser Himalaya. Geophysical Research Letters, 1996, 23, 3107-3110.	1.5	35
103	A slow earthquake sequence on the San Andreas fault. Nature, 1996, 383, 65-68.	13.7	303
104	Rift-transform kinematics in south Iceland: Deformation from Global Positioning System measurements, 1986 to 1992. Journal of Geophysical Research, 1995, 100, 6235-6248.	3.3	120
105	Response of Long Valley Caldera to theMw= 7.3 Landers, California, Earthquake. Journal of Geophysical Research, 1995, 100, 12985-13005.	3.3	90
106	Microstrain stability of Peninsular India 1864–1994. Journal of Earth System Science, 1995, 104, 131-146.	0.6	11
107	Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity. Nature, 1994, 371, 408-410.	13.7	153
108	Strain accumulation 1986-1992 across the Reykjanes Peninsula Plate Boundary, Iceland, determined from GPS measurements. Geophysical Research Letters, 1994, 21, 125-128.	1.5	25

#	Article	IF	CITATIONS
109	1991-1992 GPS measurements across the Nepal Himalaya. Geophysical Research Letters, 1994, 21, 1169-1172.	1.5	24
110	3D geometry of the strain-field at transform plate boundaries: Implications for seismic rupture. Geophysical Research Letters, 1994, 21, 2523-2526.	1.5	5
111	Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. Journal of Geophysical Research, 1994, 99, 13897-13912.	3.3	179
112	The 1737 Calcutta earthquake and cyclone evaluated. Bulletin of the Seismological Society of America, 1994, 84, 1650-1657.	1.1	22
113	The Iceland 1986 GPS geodetic survey: tectonic goals and data processing results. Bulletin Geodesique, 1993, 67, 148-172.	0.4	12
114	Aseismic growth of Durmid Hill, southeasternmost San Andreas Fault, California. Journal of Geophysical Research, 1993, 98, 14233-14243.	3.3	12
115	Magma chamber deflation recorded by the global positioning system: The Hekla 1991 Eruption. Geophysical Research Letters, 1992, 19, 1483-1486.	1.5	63
116	Uplift in the Nepal Himalaya revealed by Spirit leveling. Geophysical Research Letters, 1992, 19, 1539-1542.	1.5	15
117	Recent inactivity in African rift. Nature, 1992, 357, 447-447.	13.7	26
118	A two-layer model for aseismic slip on the Superstition Hills fault, California. Bulletin of the Seismological Society of America, 1992, 82, 1223-1235.	1.1	22
119	Earthquakes and sea level: Space and terrestrial metrology on a changing planet. Reviews of Geophysics, 1991, 29, 1-29.	9.0	31
120	On the mechanics of earthquake afterslip. Journal of Geophysical Research, 1991, 96, 8441-8452.	3.3	543
121	Aseismic slip on the San Andreas Fault south of Loma Prieta. Geophysical Research Letters, 1990, 17, 1445-1448.	1.5	15
122	Earthquakes and urban growth. Nature, 1988, 336, 625-626.	13.7	35
123	The Iceland GPS Geodetic Field Campain 1986. Eos, 1987, 68, 1809-1818.	0.1	24
124	A densely spaced array of sea level monitors for the detection of vertical crustal deformation in the Shumagin Seismic Gap, Alaska. Journal of Geophysical Research, 1986, 91, 9067-9080.	3.3	9
125	Hydrostatic levels in precision geodesy and crustal deformation measurement. Journal of Geophysical Research, 1986, 91, 9202-9216.	3.3	5
126	Sawtooth segmentation and deformation processes on the southern San Andreas Fault, California. Geophysical Research Letters, 1985, 12, 557-560.	1.5	87

#	Article	IF	Citations
127	Comparing tiltmeters for crustal deformation measurement – A preliminary report. Geophysical Research Letters, 1984, 11, 963-966.	1.5	34
128	Vertical geodesy without slope dependent errorsâ€"a proposed hydrostatic pressure level using water at 4°C. Tectonophysics, 1983, 97, 337-349.	0.9	4
129	Design Considerations in an Ultra-Stable, Long Baseline Tiltmeter — Results from a Laser Tiltmeter. , 1979, , 235-254.		5
130	Thermally induced errors in fluid tube tiltmeters. Journal of Geophysical Research, 1977, 82, 5699-5704.	3.3	20
131	Tidal Tilt Measurement in Europe. Nature, 1973, 243, 74-75.	13.7	59
132	Aseismic strain episodes at Campi Flegrei Caldera, Italy. Advances in Geosciences, 0, 52, 119-129.	12.0	4
133	Suyya's Flood: Numerical Models of Kashmir's Medieval Megaflood and Ancient Lake Kerewa Drainage Events. Earth Science, Systems and Society, 0, 1, .	0.0	1