Xiaodong Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5051361/publications.pdf

Version: 2024-02-01

687363 642732 23 753 13 23 citations h-index g-index papers 23 23 23 1205 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Oxygen Vacancy Defects Boosted High Performance p-Type Delafossite CuCrO ₂ Gas Sensors. ACS Applied Materials & Sensors. ACS	8.0	112
2	Credible evidence for the passivation effect of remnant Pbl ₂ in CH ₃ NH ₃ Pbl ₃ films in improving the performance of perovskite solar cells. Nanoscale, 2016, 8, 6600-6608.	5.6	86
3	An Efficient Approach to Fabricate Airâ€Stable Perovskite Solar Cells via Addition of a Selfâ€Polymerizing lonic Liquid. Advanced Materials, 2020, 32, e2003801.	21.0	84
4	Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives. Advanced Functional Materials, 2019, 29, 1902021.	14.9	76
5	Synthesis of CuAlO2 ceramics using sol-gel. Materials Letters, 2007, 61, 686-689.	2.6	69
6	Bioinspired Design of Strong, Tough, and Highly Conductive Polyol-Polypyrrole Composites for Flexible Electronics. ACS Applied Materials & Electronics. Electronics & Electr	8.0	64
7	Discrimination of VOCs molecules via extracting concealed features from a temperature-modulated p-type NiO sensor. Sensors and Actuators B: Chemical, 2019, 293, 342-349.	7.8	60
8	Ultrasensitive and selective CuAlO2 sensor toward H2S based on surface sulfuration-desulfuration reaction. Sensors and Actuators B: Chemical, 2020, 313, 128027.	7.8	32
9	Surface oxygen vacancy defect engineering of p-CuAlO ₂ <i>via</i> Ar&H ₂ plasma treatment for enhancing VOCs sensing performances. Chemical Communications, 2019, 55, 11691-11694.	4.1	28
10	Aliovalent Sc and Li co-doping boosts the performance of p-type NiO sensor. Sensors and Actuators B: Chemical, 2021, 326, 128834.	7.8	21
11	Generic Approach to Boost the Sensitivity of Metal Oxide Sensors by Decoupling the Surface Charge Exchange and Resistance Reading Process. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37295-37304.	8.0	19
12	The morphologies and optoelectronic properties of delafossite CuFeO2 thin films prepared by PEG assisted sol†gel method. Journal of Sol-Gel Science and Technology, 2014, 71, 297-302.	2.4	17
13	Magnetically directed soft actuators driven by moisture. Journal of Materials Chemistry C, 2017, 5, 4129-4133.	5.5	16
14	Lead-Free CsCu ₂ 1 ₃ Perovskite Nanostructured Networks Gas Sensor for Selective Detection of Trace Nitrogen Dioxide at Room Temperature. IEEE Sensors Journal, 2021, 21, 14677-14684.	4.7	13
15	Precision excimer laser annealed Ga-doped ZnO electron transport layers for perovskite solar cells. RSC Advances, 2018, 8, 17694-17701.	3.6	12
16	Room temperature deposition of amorphous p-type CuFeO2 and fabrication of CuFeO2/n-Si heterojunction by RF sputtering method. Bulletin of Materials Science, 2016, 39, 883-887.	1.7	9
17	Fabrications of Halide Perovskite Single-Crystal Slices and Their Applications in Solar Cells, Photodetectors, and LEDs. Crystal Growth and Design, 2021, 21, 5983-5997.	3.0	9
18	Insight into the Humidity Dependent Pseudo-n-Type Response of p-CuScO2 toward Ammonia. Inorganic Chemistry, 2019, 58, 9974-9981.	4.0	8

#	Article	IF	CITATIONS
19	High-Performance Planar-Type Photodetector Based on Hot-Pressed CsPbBr ₃ Wafer. Journal of Physical Chemistry Letters, 2022, 13, 3008-3015.	4.6	7
20	Flash Surface Treatment of CH ₃ NH ₃ Pbl ₃ Films Using 248 nm KrF Excimer Laser Enhances the Performance of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900020.	5.8	5
21	Effect of homo-buffer layers on the optical properties of ZnO thin films grown by pulsed laser deposition on Si (100). Journal of Materials Science: Materials in Electronics, 2008, 19, 538-542.	2.2	3
22	Fabrication of polycrystalline La2NiMnO6 thin films on Si (1 0 0) substrates by chemical solution deposition. Journal of Sol-Gel Science and Technology, 2010, 53, 655-659.	2.4	2
23	Nanosecond laser ablation tandem inductively coupled plasma mass and optical emission spectrometry for micro-chemical elemental analysis. Journal of Analytical Atomic Spectrometry, 2017, 32, 2246-2253.	3.0	1