Jeremy Gregory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5051294/publications.pdf Version: 2024-02-01

IEDEMY CDECODY

#	Article	IF	CITATIONS
1	A weighted multi-output neural network model for the prediction of rigid pavement deterioration. International Journal of Pavement Engineering, 2022, 23, 2631-2643.	4.4	4
2	Innovations to decarbonize materials industries. Nature Reviews Materials, 2022, 7, 275-294.	48.7	57
3	Mitigating life cycle GHG emissions of roads to be built through 2030: Case study of a Chinese province. Journal of Environmental Management, 2022, 319, 115512.	7.8	5
4	Texture-Informed Approach for Hurricane Loss Estimation: How Discounting Neighborhood Texture Leads to Undervaluing Wind Mitigation. Natural Hazards Review, 2022, 23, .	1.5	0
5	Thematic exploration of sectoral and cross-cutting challenges to circular economy implementation. Clean Technologies and Environmental Policy, 2021, 23, 915-936.	4.1	31
6	Towards comparable environmental product declarations of construction materials: Insights from a probabilistic comparative LCA approach. Building and Environment, 2021, 190, 107542.	6.9	23
7	Carbon uptake of concrete in the US pavement network. Resources, Conservation and Recycling, 2021, 167, 105397.	10.8	12
8	Environmental and economic implications of U.S. postconsumer plastic waste management. Resources, Conservation and Recycling, 2021, 167, 105391.	10.8	24
9	Urban-Scale Evaluation of Cool Pavement Impacts on the Urban Heat Island Effect and Climate Change. Environmental Science & Technology, 2021, 55, 11501-11510.	10.0	5
10	The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
11	Environmental and economic evaluations of treatment strategies for pavement network performance-based planning. Transportation Research, Part D: Transport and Environment, 2021, 99, 103016.	6.8	2
12	Regional variation of greenhouse gas mitigation strategies for the United States building sector. Applied Energy, 2021, 302, 117527.	10.1	12
13	What is the potential for prefabricated buildings to decrease costs and contribute to meeting EU environmental targets?. Building and Environment, 2021, 206, 108382.	6.9	23
14	Incorporating cost uncertainty and path dependence into treatment selection for pavement networks. Transportation Research Part C: Emerging Technologies, 2020, 110, 40-55.	7.6	29
15	Potential Contribution of Deflection-Induced Fuel Consumption to U.S. Greenhouse Gas Emissions. Transportation Research Record, 2020, 2674, 931-937.	1.9	8
16	An integrated model for quantifying the impacts of pavement albedo and urban morphology on building energy demand. Energy and Buildings, 2020, 211, 109759.	6.7	30
17	Quantifying Location-Specific Impacts of Pavement Albedo on Radiative Forcing Using an Analytical Approach. Environmental Science & Technology, 2020, 54, 2411-2421.	10.0	15
18	Sensitivity analysis of a deflection-induced pavement–vehicle interaction model. Road Materials and Pavement Design, 2019, 20, 1880-1898.	4.0	4

JEREMY GREGORY

#	Article	IF	CITATIONS
19	Role of the use phase and pavement-vehicle interaction in comparative pavement life cycle assessment as a function of context. Journal of Cleaner Production, 2019, 230, 1156-1164.	9.3	27
20	Embedding Flexibility within Pavement Management: Technique to Improve Expected Performance of Roadway Systems. Journal of Infrastructure Systems, 2019, 25, .	1.8	10
21	Probabilistic Life-Cycle Cost Analysis of Pavements Based on Simulation Optimization. Transportation Research Record, 2019, 2673, 389-396.	1.9	16
22	Overview of Pavement Life Cycle Assessment Use Phase Research at the MIT Concrete Sustainability Hub. , 2019, , .		6
23	A Review of Pavement Economic Studies at the MIT Concrete Sustainability Hub. , 2019, , .		0
24	Streamlining the Life Cycle Assessment of Buildings by Structured Underâ€ S pecification and Probabilistic Triage. Journal of Industrial Ecology, 2019, 23, 268-279.	5.5	15
25	Structured Underâ€Specification of Life Cycle Impact Assessment Data for Building Assemblies. Journal of Industrial Ecology, 2019, 23, 319-334.	5.5	20
26	Actionable insights with less data: guiding early building design decisions with streamlined probabilistic life cycle assessment. International Journal of Life Cycle Assessment, 2018, 23, 1903-1915.	4.7	37
27	How much should be invested in hazard mitigation? Development of a streamlined hazard mitigation cost assessment framework. International Journal of Disaster Risk Reduction, 2018, 28, 578-584.	3.9	3
28	Streamlined environmental and cost life-cycle approach for building thermal retrofits: A case of residential buildings in South European climates. Journal of Cleaner Production, 2018, 172, 2625-2635.	9.3	28
29	Lifecycle Cost Analysis of Prefabricated Composite and Masonry Buildings: Comparative Study. Journal of Architectural Engineering, 2018, 24, .	1.6	21
30	The Impact of Pavement Albedo on Radiative Forcing and Building Energy Demand: Comparative Analysis of Urban Neighborhoods. Transportation Research Record, 2018, 2672, 88-96.	1.9	2
31	Does Pavement Degradation Follow a Random Walk with Drift? Evidence from Variance Ratio Tests for Pavement Roughness. Journal of Infrastructure Systems, 2018, 24, .	1.8	18
32	Building design-space exploration through quasi-optimization of life cycle impacts and costs. Building and Environment, 2018, 144, 34-44.	6.9	26
33	Construction cost estimation: A parametric approach for better estimates of expected cost and variation. Transportation Research Part B: Methodological, 2017, 101, 295-305.	5.9	38
34	Environmental life-cycle assessment. Nature Materials, 2017, 16, 693-697.	27.5	85
35	Sequential early-design guidance for residential single-family buildings using a probabilistic metamodel of energy consumption. Energy and Buildings, 2017, 134, 202-211.	6.7	49
36	Probabilistic Approach for Long-Run Price Projections: Case Study of Concrete and Asphalt. Journal of Construction Engineering and Management - ASCE, 2017, 143, .	3.8	18

JEREMY GREGORY

#	Article	IF	CITATIONS
37	Probabilistic Characterization of Life-Cycle Agency and User Costs: Case Study of Minnesota. Transportation Research Record, 2017, 2639, 93-101.	1.9	5
38	Quantifying Domestic Used Electronics Flows using a Combination of Material Flow Methodologies: A US Case Study. Environmental Science & Technology, 2016, 50, 5711-5719.	10.0	25
39	A Methodology for Robust Comparative Life Cycle Assessments Incorporating Uncertainty. Environmental Science & Technology, 2016, 50, 6397-6405.	10.0	58
40	Accounting for Variation in Life Cycle Inventories: The Case of Portland Cement Production in the U.S., 2016, 145-149.		0
41	A Simulation Framework for Network Level Cost Analysis in Infrastructure Systems. , 2015, , .		5
42	Probabilistic Life-Cycle Cost Analysis of Pavements. Transportation Research Record, 2015, 2523, 47-55.	1.9	17
43	Dynamic fleet-based life-cycle greenhouse gas assessment of the introduction of electric vehicles in the Portuguese light-duty fleet. International Journal of Life Cycle Assessment, 2015, 20, 1287-1299.	4.7	35
44	Stochastic comparative assessment of life-cycle greenhouse gas emissions from conventional and electric vehicles. International Journal of Life Cycle Assessment, 2015, 20, 854-864.	4.7	31
45	Quantifying Export Flows of Used Electronics: Advanced Methods to Resolve Used Goods within Trade Data. Environmental Science & Technology, 2014, 48, 3263-3271.	10.0	16
46	Analyzing uncertainty in a comparative life cycle assessment of hand drying systems. International Journal of Life Cycle Assessment, 2013, 18, 1605-1617.	4.7	33
47	Comparative pavement life cycle assessment with parameter uncertainty. Transportation Research, Part D: Transport and Environment, 2013, 25, 131-138.	6.8	81
48	Probabilistic Characterization of Uncertain Inputs in the Life-Cycle Cost Analysis of Pavements. Transportation Research Record, 2013, 2366, 71-77.	1.9	30
49	Environmental assessment of information technology products using a triage approach. , 2011, , .		0
50	Methods for estimating end of life electronics exports from North America. , 2011, , .		0
51	Life cycle analysis of plastics for packaging: PVC and PET. , 2010, , .		1
52	Modeling electronic waste recovery systems under uncertainty. , 2010, , .		1
53	Modeling the impact of product portfolio on the economic and environmental performance of recycling systems. , 2009, , .		2
54	Evaluating the Economic Viability of a Material Recovery System: The Case of Cathode Ray Tube Glass. Environmental Science & Technology, 2009, 43, 9245-9251.	10.0	59

#	Article	IF	CITATIONS
55	Supply and demand in the material recovery system for cathode ray tube glass. , 2009, , .		4
56	Is economic value an effective proxy for embodied energy and environmental impact in material systems?. , 2009, , .		3
57	End-of-life LCA allocation methods: Open loop recycling impacts on robustness of material selection decisions. , 2009, , .		51
58	Assessing the sustainability of the material recovery system for CRT glass. , 2008, , .		0
59	Modeling the economic and environmental performance of recycling systems. , 2008, , .		6
60	Original equipment manufacturer end-of-life equipment collection metrics. , 2008, , .		0
61	Characterizing architectural options for electronic waste recycling systems. , 2008, , .		2
62	A Framework for Evaluating the Economic Performance of Recycling Systems: A Case Study of North American Electronics Recycling Systems. Environmental Science & Technology, 2008, 42, 6800-6808.	10.0	26
63	A Comparison of North American Electronics Recycling Systems. Electronics and the Environment, IEEE International Symposium on, 2007, , .	0.0	8
64	Material Availability and the Supply Chain:  Risks, Effects, and Responses. Environmental Science & Technology, 2007, 41, 6649-6656.	10.0	111
65	Modeling Inelastic Matrix Crack Tip Deformation in a Double Cantilever Beam Specimen. Journal of Composite Materials, 2006, 40, 143-156.	2.4	3
66	A Process-Based Model of End-of-Life Electronics Recycling Driving Eco-Efficiency-Informed Decisions. , 2006, , .		4
67	Nanoindentation of neat and polymers in polymer?matrix composites. Composites Science and Technology, 2005, 65, 595-607.	7.8	68
68	Constituent and composite quasi-static and fatigue fracture experiments. Composites Part A: Applied Science and Manufacturing, 2005, 36, 665-674.	7.6	37
69	A fiber bridging model for fatigue delamination in composite materials. Acta Materialia, 2004, 52, 5493-5502.	7.9	34