Li Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505092/publications.pdf

Version: 2024-02-01

92	E 000	136740	123241
82	5,808	32	61
papers	citations	h-index	g-index
82	82	82	9268
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flexible and Wearable Hybrid RF and Solar Energy Harvesting System. IEEE Transactions on Antennas and Propagation, 2022, 70, 2223-2233.	3.1	30
2	Bismuthene. , 2022, , 173-196.		1
3	Integration paths for Xenes. , 2022, , 405-438.		1
4	Effects of the thickness and laser irradiation on the electrical properties of e-beam evaporated 2D bismuth. Nanoscale, 2021, 13, 2648-2657.	2.8	13
5	Thermoelectric effect and devices on <scp>IVA</scp> and <scp>VA</scp> Xenes. InformaÄnÃ-Materiály, 2021, 3, 271-292.	8.5	17
6	Intrinsic memristive mechanisms in 2D layered materials for high-performance memory. Journal of Applied Physics, 2021, 129, .	1.1	15
7	Vis-NIR photodetector with microsecond response enabled by 2D bismuth/Si(111) heterojunction. 2D Materials, 2021, 8, 035002.	2.0	27
8	Thermoelectric and Photoelectric Effects of 2D Bismuth for Flexible Electronics., 2021,,.		O
9	Conductive Porous MXene for Bionic, Wearable, and Precise Gesture Motion Sensors. Research, 2021, 2021, 9861467.	2.8	18
10	Efficient Full-Color Boron Nitride Quantum Dots for Thermostable Flexible Displays. ACS Nano, 2021, 15, 14610-14617.	7.3	32
11	Contactless tracking of humans using non-contact triboelectric sensing technology: Enabling new assistive applications for the elderly and the visually impaired. Nano Energy, 2021, 90, 106486.	8.2	38
12	Thermosensitive hydrogel-functionalized gold nanorod/mesoporous MnO2 nanoparticles for tumor cell-triggered drug delivery. Materials Science and Engineering C, 2021, 131, 112504.	3.8	12
13	Morphology Optimization of Bi ₂ Se ₃ Thin Films for Enhanced Thermoelectric Performance. Crystal Growth and Design, 2021, 21, 6737-6743.	1.4	8
14	Energy-efficient Flexible Ammonia Sensors Enabled by Polypyrrole-Graphene. , 2021, , .		0
15	Physical vapor deposited 2D bismuth for CMOS technology. Journal of Semiconductors, 2020, 41, 081001.	2.0	7
16	Disassembling Silicene from Native Substrate and Transferring onto an Arbitrary Target Substrate. Advanced Functional Materials, 2020, 30, 2004546.	7.8	21
17	Electrospun Mg/poly(lactic-co-glycolic acid) composite scaffold for urethral reconstruction. Journal of Materials Science, 2020, 55, 13216-13231.	1.7	6
18	Prospects and challenges in low-dimensional materials and devices for Internet of things. , 2020, , 291-327.		3

#	Article	IF	CITATIONS
19	Anisotropic thermoelectric effect and field-effect devices in epitaxial bismuthene on Si (111). Nanotechnology, 2020, 31, 475202.	1.3	17
20	Two-Dimensional Pnictogen for Field-Effect Transistors. Research, 2019, 2019, 1046329.	2.8	34
21	Transparent Nanoscale Polyimide Gate Dielectric for Highly Flexible Electronics. Advanced Electronic Materials, 2018, 4, 1700043.	2.6	24
22	Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Letters, 2018, 18, 434-441.	4.5	375
23	Encapsulated Silicene Field-Effect Transistors. Nanoscience and Technology, 2018, , 235-254.	1.5	1
24	Mechanical and Biological Properties of a Biodegradable Mgâ€Znâ€Ca Porous Alloy. Orthopaedic Surgery, 2018, 10, 160-168.	0.7	19
25	Silicene, silicene derivatives, and their device applications. Chemical Society Reviews, 2018, 47, 6370-6387.	18.7	261
26	Enhanced fully-biodegradable Mg/PLA composite rod: Effect of surface modification of Mg-2Zn wire on the interfacial bonding. Surface and Coatings Technology, 2018, 350, 722-731.	2.2	21
27	Self-reinforced biodegradable Mg-2Zn alloy wires/polylactic acid composite for orthopedic implants. Composites Science and Technology, 2018, 162, 198-205.	3 . 8	21
28	Direct Observation of Poly(Methyl Methacrylate) Removal from a Graphene Surface. Chemistry of Materials, 2017, 29, 2033-2039.	3.2	41
29	Silicon Nanosheets: Crossover between Multilayer Silicene and Diamond-like Growth Regime. ACS Nano, 2017, 11, 3376-3382.	7.3	61
30	Exceptional texture evolution induced by multi-pass cold drawing of magnesium alloy. Materials and Design, 2017, 135, 267-274.	3.3	37
31	Graphene Electronic Tattoo Sensors. ACS Nano, 2017, 11, 7634-7641.	7.3	476
32	Chemical-sensitive graphene modulator with a memory effect for internet-of-things applications. Microsystems and Nanoengineering, 2016, 2, 16018.	3.4	36
33	Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Applied Physics Letters, 2016, 108, .	1.5	68
34	Invited Talk1., 2016,,.		0
35	Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films. Nano Letters, 2016, 16, 6931-6938.	4.5	87
36	Clean graphene interfaces by selective dry transfer for large area silicon integration. Nanoscale, 2016, 8, 7523-7533.	2.8	35

#	Article	IF	CITATIONS
37	Mixed-mode traction-separation relations between graphene and copper by blister tests. International Journal of Solids and Structures, 2016, 84, 147-159.	1.3	39
38	Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns. ACS Nano, 2016, 10, 1404-1410.	7.3	69
39	Efficient trust chain model based on turing machine. Security and Communication Networks, 2015, 8, 2-12.	1.0	1
40	Towards the Realization of Graphene Based Flexible Radio Frequency Receiver. Electronics (Switzerland), 2015, 4, 933-946.	1.8	11
41	Suppression of Copper Thin Film Loss during Graphene Synthesis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1527-1532.	4.0	11
42	Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 2015, 10, 227-231.	15.6	1,429
43	Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects. ACS Nano, 2015, 9, 1325-1335.	7.3	104
44	Flexible Black Phosphorus Ambipolar Transistors, Circuits and AM Demodulator. Nano Letters, 2015, 15, 1883-1890.	4.5	394
45	Toward air-stable multilayer phosphorene thin-films and transistors. Scientific Reports, 2015, 5, 8989.	1.6	344
46	Mixed-Mode Interactions Between Graphene and Substrates by Blister Tests. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	25
47	Large-Area Graphene Electrodes: Using CVD to facilitate applications in commercial touchscreens, flexible nanoelectronics, and neural interfaces. IEEE Nanotechnology Magazine, 2015, 9, 6-14.	0.9	38
48	(Invited) silicene and phosphorene: Progress on the intriguing case of buckled atomic sheets. , 2015, , .		1
49	Improvement of graphene field-effect transistors by hexamethyldisilazane surface treatment. Applied Physics Letters, 2014, 105, 033117.	1.5	18
50	Enhancement of graphene field-effect transistor by surface treatment. , 2014, , .		2
51	Direct Delamination of Graphene for Highâ€Performance Plastic Electronics. Small, 2014, 10, 694-698.	5.2	52
52	Towards the design and fabrication of graphene based flexible GHz radio receiver systems. , 2014, , .		9
53	Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene Transistors. ACS Nano, 2014, 8, 10471-10479.	7.3	87
54	INVERSION OF THE ELECTRICAL AND OPTICAL PROPERTIES OF PARTIALLY OXIDIZED HEXAGONAL BORON NITRIDE. Nano, 2014, 09, 1450002.	0.5	10

#	Article	lF	Citations
55	A blister test for interfacial adhesion of large-scale transferred graphene. Carbon, 2014, 69, 390-400.	5.4	88
56	Graphene Synthesis <i>via</i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499.	7.3	77
57	Inductively heated synthesized graphene with record transistor mobility on oxidized silicon substrates at room temperature. Applied Physics Letters, 2013, 103, .	1.5	21
58	High-Performance Current Saturating Graphene Field-Effect Transistor With Hexagonal Boron Nitride Dielectric on Flexible Polymeric Substrates. IEEE Electron Device Letters, 2013, 34, 172-174.	2.2	53
59	High-Performance, Highly Bendable MoS ₂ Transistors with High-K Dielectrics for Flexible Low-Power Systems. ACS Nano, 2013, 7, 5446-5452.	7.3	445
60	Graphene-Si heterogeneous nanotechnology. , 2013, , .		0
61	Graphene Raman imaging and spectroscopy processing: characterization of graphene growth., 2012,,.		2
62	Highly bendable high-mobility graphene field effect transistors with multi-finger embedded gates on flexible substrates. , 2012 , , .		1
63	State-of-the-art graphene transistors on hexagonal boron nitride, high-k, and polymeric films for GHz flexible analog nanoelectronics. , 2012, , .		7
64	Graphene frequency doubler with record 3GHz bandwidth and the maximum conversion gain prospects. , 2012, , .		5
65	Multi-finger flexible graphene field effect transistors with high bendability. Applied Physics Letters, 2012, 101, .	1.5	42
66	Uniform Wafer-Scale Chemical Vapor Deposition of Graphene on Evaporated Cu (111) Film with Quality Comparable to Exfoliated Monolayer. Journal of Physical Chemistry C, 2012, 116, 24068-24074.	1.5	69
67	Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films. ACS Nano, 2012, 6, 2319-2325.	7.3	160
68	Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Applied Physics Letters, 2012, 100, .	1.5	60
69	Wafer-scale synthesis and transfer of high quality monolayer graphene for nanoelectronics. , 2011, , .		O
70	Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Experimental Biology and Medicine, 2011, 236, 20-29.	1.1	130
71	Nanofabrication down to 10 nm on a plastic substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 06FG07.	0.6	12
72	Wafer-scale graphene technology and GHz nanoelectronics (invited)., 2011,,.		0

#	Article	IF	CITATION
73	Lithographically defined uniform worm-shaped polymeric nanoparticles. Nanotechnology, 2010, 21, 095301.	1.3	37
74	Physical characterization of nanoimprinted polymer nanostructures using visible light angular scatterometry. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2008, 7, 013008.	1.0	5
75	Durable diamond-like carbon templates for UV nanoimprint lithography. Nanotechnology, 2008, 19, 105302.	1.3	17
76	Interfacial adhesion studies for step and flash imprint lithography. , 2008, , .		3
77	Characterizing nanoimprint profile shape and polymer flow behavior using visible light angular scatterometry. Journal of Vacuum Science & Technology B, 2007, 25, 2396.	1.3	24
78	Surface energy induced patterning of organic and inorganic materials on heterogeneous Si surfaces. Journal of Vacuum Science & Technology B, 2007, 25, 1993.	1.3	6
79	Visible light angular scatterometry for nanolithography. , 2007, , .		1
80	Surface energy induced patterning of polymer nanostructures for cancer diagnosis and therapy. , 2007, , .		1
81	Deposition and patterning of diamondlike carbon as antiwear nanoimprint templates. Journal of Vacuum Science & Technology B, 2006, 24, 2993.	1.3	32
82	Multi-Interface-Induced Thermal Conductivity Reduction and Thermoelectric Performance Improvement in a Cu–Ni Alloy. ACS Applied Energy Materials, 0, , .	2.5	3