Abhronil Sengupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5050568/publications.pdf

Version: 2024-02-01

		279487	2	288905
55	2,743	23		40
papers	citations	h-index		g-index
FF	FF	FF		2076
55	55	55		2076
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375, 533-539.	6.0	93
2	Switching Dynamics in Vanadium Dioxide-Based Stochastic Thermal Neurons. IEEE Transactions on Electron Devices, 2022, 69, 3135-3141.	1.6	5
3	Neuroevolution Guided Hybrid Spiking Neural Network Training. Frontiers in Neuroscience, 2022, 16, 838523.	1.4	2
4	Synthesis and electrical behavior of VO2 thin films grown on SrRuO3 electrode layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	2
5	RxNN: A Framework for Evaluating Deep Neural Networks on Resistive Crossbars. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 326-338.	1.9	54
6	Power System Disturbance Classification With Online Event-Driven Neuromorphic Computing. IEEE Transactions on Smart Grid, 2021, 12, 2343-2354.	6.2	9
7	Gesture-SNN: Co-optimizing accuracy, latency and energy of SNNs for neuromorphic vision sensors. , 2021, , .		6
8	Intrinsic synaptic plasticity of ferroelectric field effect transistors for online learning. Applied Physics Letters, 2021, 119, .	1.5	12
9	Emulation of Astrocyte Induced Neural Phase Synchrony in Spin-Orbit Torque Oscillator Neurons. Frontiers in Neuroscience, 2021, 15, 699632.	1.4	2
10	Spin and Charge Interconversion in Dirac-Semimetal Thin Films. Physical Review Applied, 2021, 16, .	1.5	20
11	TraNNsformer: Clustered Pruning on Crossbar-Based Architectures for Energy-Efficient Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2361-2374.	1.9	7
12	NEBULA: A Neuromorphic Spin-Based Ultra-Low Power Architecture for SNNs and ANNs., 2020, , .		23
13	Revisiting Stochastic Computing in the Era of Nanoscale Nonvolatile Technologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 2481-2494.	2.1	8
14	Exploiting Oxide Based Resistive RAM Variability for Bayesian Neural Network Hardware Design. IEEE Nanotechnology Magazine, 2020, 19, 328-331.	1.1	22
15	Stochastic magnetoelectric neuron for temporal information encoding. Applied Physics Letters, 2020, 116, 043701.	1.5	8
16	Exploring the Connection Between Binary and Spiking Neural Networks. Frontiers in Neuroscience, 2020, 14, 535.	1.4	61
17	All-Spin Bayesian Neural Networks. IEEE Transactions on Electron Devices, 2020, 67, 1340-1347.	1.6	22
18	On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs. Frontiers in Neuroscience, 2020, 14, 603796.	1.4	10

#	Article	IF	CITATIONS
19	Going Deeper in Spiking Neural Networks: VGG and Residual Architectures. Frontiers in Neuroscience, 2019, 13, 95.	1.4	573
20	Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives. Applied Physics Express, 2018, 11, 030101.	1.1	44
21	Biased Random Walk Using Stochastic Switching of Nanomagnets: Application to SAT Solver. IEEE Transactions on Electron Devices, 2018, 65, 1617-1624.	1.6	3
22	Cross-Layer Design Exploration for Energy-Quality Tradeoffs in Spiking and Non-Spiking Deep Artificial Neural Networks. IEEE Transactions on Multi-Scale Computing Systems, 2018, 4, 613-623.	2.5	11
23	Stochastic Inference and Learning Enabled by Magnetic Tunnel Junctions. , 2018, , .		14
24	Neuromorphic Computing Across the Stack: Devices, Circuits and Architectures. , 2018, , .		6
25	Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons. Scientific Reports, 2018, 8, 12980.	1.6	132
26	An All-Memristor Deep Spiking Neural Computing System: A Step Toward Realizing the Low-Power Stochastic Brain. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2, 345-358.	3.4	81
27	Magnetic Skyrmion as a Spintronic Deep Learning Spiking Neuron Processor. IEEE Transactions on Magnetics, 2018, 54, 1-7.	1.2	38
28	Perspective: Stochastic magnetic devices for cognitive computing. Journal of Applied Physics, 2018, 123, 210901.	1.1	27
29	Efficient Neuromorphic Systems and Emerging Technologies: Prospects and Perspectives. , 2017, , 261-274.		3
30	Magnetic tunnel junction enabled all-spin stochastic spiking neural network. , 2017, , .		34
31	Energy-Efficient Object Detection Using Semantic Decomposition. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 2673-2677.	2.1	5
32	Magnetic Tunnel Junction as an On-Chip Temperature Sensor. Scientific Reports, 2017, 7, 11764.	1.6	24
33	RESPARC., 2017,,.		60
34	Performance analysis and benchmarking of all-spin spiking neural networks (Special session paper)., 2017,,.		12
35	Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference. Scientific Reports, 2017, 7, 14101.	1.6	29
36	Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing. Applied Physics Reviews, 2017, 4, 041105.	5 . 5	101

3

#	Article	lF	Citations
37	Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes. Physical Review Applied, 2017, 8, .	1.5	49
38	TraNNs former: Neural network transformation for memristive crossbar based neuromorphic system design. , $2017, \dots$		28
39	A Vision for All-Spin Neural Networks: A Device to System Perspective. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 2267-2277.	3.5	58
40	Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons. Scientific Reports, 2016, 6, 30039.	1.6	125
41	Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems. Physical Review Applied, 2016, 6, .	1.5	76
42	Toward a spintronic deep learning spiking neural processor. , 2016, , .		11
43	Spintronic devices for ultra-low power neuromorphic computation (Special session paper). , 2016, , .		14
44	Short-Term Plasticity and Long-Term Potentiation in Magnetic Tunnel Junctions: Towards Volatile Synapses. Physical Review Applied, 2016, 5, .	1.5	40
45	On the energy benefits of spiking deep neural networks: A case study. , 2016, , .		27
46	Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning. Scientific Reports, 2016, 6, 29545.	1.6	162
47	Invited - Cross-layer approximations for neuromorphic computing: from devices to circuits and systems. , $2016, , .$		30
48	Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 1152-1160.	2.7	141
49	Probabilistic Deep Spiking Neural Systems Enabled by Magnetic Tunnel Junction. IEEE Transactions on Electron Devices, 2016, 63, 2963-2970.	1.6	88
50	Spin-Torque Sensors for Energy Efficient High-Speed Long Interconnects. IEEE Transactions on Electron Devices, 2016, 63, 800-808.	1.6	8
51	Prospects of efficient neural computing with arrays of magneto-metallic neurons and synapses. , 2016, , .		1
52	Spin-Transfer Torque Devices for Logic and Memory: Prospects and Perspectives. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35, 1-22.	1.9	153
53	Spin-orbit torque induced spike-timing dependent plasticity. Applied Physics Letters, 2015, 106, .	1.5	74
54	Spin orbit torque based electronic neuron. Applied Physics Letters, 2015, 106, .	1.5	71

ARTICLE IF CITATIONS

55 Spin-Transfer Torque Magnetic neuron for low power neuromorphic computing., 2015,,. 24