Hamideh Khanbareh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applications. International Materials Reviews, 2022, 67, 683-733.	19.3	21
2	Piezoelectric composites. , 2022, , 457-475.		2
3	High Efficiency Water Splitting using Ultrasound Coupled to a BaTiO ₃ Nanofluid. Advanced Science, 2022, 9, e2105248.	11.2	17
4	Piezoelectric catalysis for efficient reduction of CO2 using lead-free ferroelectric particulates. Nano Energy, 2022, 95, 107032.	16.0	40
5	NiO–Ti nanocomposites for contact electrification and energy harvesting: experimental and DFT+ <i>U</i> studies. Sustainable Energy and Fuels, 2022, 6, 2439-2448.	4.9	3
6	Polarisation tuneable piezo-catalytic activity of Nb-doped PZT with low Curie temperature for efficient CO ₂ reduction and H ₂ generation. Nanoscale Advances, 2021, 3, 1362-1374.	4.6	39
7	Flexible ferroelectric wearable devices for medical applications. IScience, 2021, 24, 101987.	4.1	29
8	Piezoelectric energy harvesting for selfâ€powered wearable upper limb applications. Nano Select, 2021, 2, 1459-1479.	3.7	72
9	Construction of Bioâ€Piezoelectric Platforms: From Structures and Synthesis to Applications. Advanced Materials, 2021, 33, e2008452.	21.0	114
10	Additively manufactured BaTiO3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications. Materials Science and Engineering C, 2021, 126, 112192.	7.3	42
11	Bioâ€Piezoelectric Platforms: Construction of Bioâ€Piezoelectric Platforms: From Structures and Synthesis to Applications (Adv. Mater. 27/2021). Advanced Materials, 2021, 33, 2170206.	21.0	4
12	High voltage coefficient piezoelectric materials and their applications. Journal of the European Ceramic Society, 2021, 41, 6115-6129.	5.7	32
13	IEEE Access Special Section Editorial: Energy Harvesting Technologies for Wearable and Implantable Devices. IEEE Access, 2021, 9, 91324-91327.	4.2	2
14	Effect of topological imperfections on the electroâ€nechanical properties of structured piezoelectric particulate composites. JPhys Materials, 2020, 3, 014004.	4.2	1
15	Self-Healing of Materials under High Electrical Stress. Matter, 2020, 3, 989-1008.	10.0	47
16	Demonstration of Enhanced Piezo-Catalysis for Hydrogen Generation and Water Treatment at the Ferroelectric Curie Temperature. IScience, 2020, 23, 101095.	4.1	64
17	Harnessing Plasticity in an Amineâ€Borane as a Piezoelectric and Pyroelectric Flexible Film. Angewandte Chemie - International Edition, 2020, 59, 7808-7812.	13.8	32
18	Harnessing Plasticity in an Amineâ€Borane as a Piezoelectric and Pyroelectric Flexible Film. Angewandte Chemie. 2020. 132. 7882-7886.	2.0	5

Hamideh Khanbareh

#	Article	IF	CITATIONS
19	Thermal Energy Harvesting Using Pyroelectric-Electrochemical Coupling in Ferroelectric Materials. Joule, 2020, 4, 301-309.	24.0	103
20	Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems. European Physical Journal: Special Topics, 2019, 228, 1537-1554.	2.6	66
21	Piezo-Particulate Composites. Springer Series in Materials Science, 2019, , .	0.6	8
22	Experimental Studies on Effective Properties and Related Parameters of Piezo-Particulate Composites. Springer Series in Materials Science, 2019, , 55-85.	0.6	0
23	Aspects of Composite Manufacturing. Springer Series in Materials Science, 2019, , 25-53.	0.6	0
24	Prediction of Effective Properties of Composites Based on Ferroelectric Ceramics. Springer Series in Materials Science, 2019, , 103-141.	0.6	0
25	Tailoring porous piezoelectric properties for selected modes of energy harvesting. , 2019, , .		0
26	Piezoelectric performance of PZT-based materials with aligned porosity: experiment and modelling. Smart Materials and Structures, 2019, 28, 125021.	3.5	7
27	Ferroelectret materials and devices for energy harvesting applications. Nano Energy, 2019, 57, 118-140.	16.0	108
28	Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic–polymer composites. Energy and Environmental Science, 2018, 11, 2919-2927.	30.8	130
29	Understanding the effect of porosity on the polarisation-field response of ferroelectric materials. Acta Materialia, 2018, 154, 100-112.	7.9	97
30	In-situ poling and structurization of piezoelectric particulate composites. Journal of Intelligent Material Systems and Structures, 2017, 28, 2467-2472.	2.5	18
31	Highly sensitive piezo particulate-polymer foam composites for robotic skin application. Ferroelectrics, 2017, 515, 25-33.	0.6	13
32	Functionally graded ferroelectric polyetherimide composites for high temperature sensing. Journal of Materials Chemistry C, 2017, 5, 9389-9397.	5.5	18
33	Large area and flexible micro-porous piezoelectric materials for soft robotic skin. Sensors and Actuators A: Physical, 2017, 263, 554-562.	4.1	28
34	Control of electro-chemical processes using energy harvesting materials and devices. Chemical Society Reviews, 2017, 46, 7757-7786.	38.1	135
35	Structure, dielectric and piezoelectric properties of donor doped PZT ceramics across the phase diagram. Ferroelectrics, 2016, 504, 160-171.	0.6	48
36	Computational modeling of structure formation during dielectrophoresis in particulate composites. Computational Materials Science, 2016, 112, 139-146.	3.0	15

#	Article	IF	CITATIONS
37	A temperature oscillation instrument to determine pyroelectric properties of materials at low frequencies: Towards elimination of lock-in methods. Review of Scientific Instruments, 2015, 86, 105111.	1.3	3
38	Advanced processing of lead titanate-polyimide composites for high temperature piezoelectric sensing. , 2015, , .		3
39	Piezoelectric and pyroelectric properties of conductive polyethylene oxide-lead titanate composites. Smart Materials and Structures, 2015, 24, 045020.	3.5	17
40	Piezoelectric and pyroelectric properties of lead titanate-polyethylene oxide composites. , 2014, , .		2
41	Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites. Smart Materials and Structures, 2014, 23, 105030.	3.5	40
42	In situ observation of austenite–ferrite interface migration in a lean Mn steel during cyclic partial phase transformations. Acta Materialia, 2013, 61, 2414-2424.	7.9	54
43	Analysis of the fractal dimension of grain boundaries of AA7050 aluminum alloys and its relationship to fracture toughness. Journal of Materials Science, 2012, 47, 6246-6253.	3.7	21
44	Effect of isothermal aging on room temperature impression creep of lead free Sn–9Zn and Sn–8Zn–3Bi solders. Materials Science and Technology, 2010, 26, 1001-1007.	1.6	4
45	A comparison of impression, indentation and impression-relaxation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solders at room temperature. Journal of Materials Science: Materials in Electronics, 2009, 20, 312-318.	2.2	16
46	Indentation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solder alloys. Materials & Design, 2009, 30, 574-580.	5.1	72
47	Effect of cooling rate on the room-temperature impression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 20-25.	5.6	35