Yunhua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5049784/publications.pdf

Version: 2024-02-01

78 papers

3,197 citations

34 h-index 54 g-index

79 all docs

79 docs citations

79 times ranked 4191 citing authors

#	Article	IF	CITATIONS
1	Selfâ€Stabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahighâ€Rate and Largeâ€Capacity Lithiumâ€Metal Anode. Angewandte Chemie - International Edition, 2020, 59, 2055-2060.	13.8	204
2	A Quadrupleâ€Hydrogenâ€Bonded Supramolecular Binder for Highâ€Performance Silicon Anodes in Lithiumâ€Ion Batteries. Small, 2018, 14, e1801189.	10.0	171
3	A Rapidly Selfâ€Healing Host–Guest Supramolecular Hydrogel with High Mechanical Strength and Excellent Biocompatibility. Angewandte Chemie - International Edition, 2018, 57, 9008-9012.	13.8	149
4	3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks. Materials Horizons, 2019, 6, 733-742.	12.2	148
5	High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths. Journal of Materials Chemistry B, 2017, 5, 2671-2678.	5.8	107
6	Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomaterialia, 2010, 6, 275-281.	8.3	100
7	Progress in self-healing hydrogels assembled by host–guest interactions: preparation and biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1637-1651.	5.8	93
8	Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures. Polymer, 2009, 50, 2587-2594.	3.8	91
9	Dynamic Supramolecular Hydrogels: Regulating Hydrogel Properties through Self-Complementary Quadruple Hydrogen Bonds and Thermo-Switch. ACS Macro Letters, 2017, 6, 641-646.	4.8	90
10	Fabrication of novel core-shell hybrid alginate hydrogel beads. International Journal of Pharmaceutics, 2008, 351, 104-112.	5,2	83
11	Facile fabrication of nanocomposite microspheres with polymer cores and magnetic shells by Pickering suspension polymerization. Reactive and Functional Polymers, 2009, 69, 750-754.	4.1	78
12	On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics, 2020, 10, 109-122.	10.0	68
13	Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nature Biomedical Engineering, 2021, 5, 1189-1201.	22.5	67
14	Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Biomaterials Science, 2019, 7, 4046-4059.	5.4	65
15	Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chemical Communications, 2013, 49, 1524.	4.1	64
16	Wet-adhesive, haemostatic and antimicrobial bilayered composite nanosheets for sealing and healing soft-tissue bleeding wounds. Biomaterials, 2020, 252, 120018.	11.4	62
17	Growth of lightly crosslinked PHEMA brushes and capsule formation using pickering emulsion interfaceâ€initiated ATRP. Journal of Polymer Science Part A, 2009, 47, 1354-1367.	2.3	61
18	High internal phase emulsion gels (HIPE-gels) from polymer dispersions reinforced with quadruple hydrogen bond functionality. Chemical Communications, 2012, 48, 1117-1119.	4.1	59

#	Article	IF	CITATIONS
19	Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. Journal of Materials Chemistry B, 2019, 7, 6705-6736.	5.8	59
20	Hierarchical self-assembly of â€~hard–soft' Janus particles into colloidal molecules and larger supracolloidal structures. Soft Matter, 2014, 10, 7730-7735.	2.7	54
21	Cellulose Nanofibril-Stabilized Pickering Emulsion and In Situ Polymerization Lead to Hybrid Aerogel for High-Efficiency Solar Steam Generation. ACS Applied Polymer Materials, 2020, 2, 4581-4591.	4.4	53
22	Fusion peptide engineered "statically-versatile―titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration. Biomaterials, 2021, 264, 120446.	11.4	52
23	Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells. International Journal of Pharmaceutics, 2009, 376, 92-98.	5.2	49
24	Weak Hydrogen Bonds Lead to Self-Healable and Bioadhesive Hybrid Polymeric Hydrogels with Mineralization-Active Functions. Biomacromolecules, 2018, 19, 1939-1949.	5.4	49
25	Synthesis of "Hard–Soft―Janus Particles by Seeded Dispersion Polymerization. Langmuir, 2014, 30, 13525-13532.	3.5	46
26	Hierarchical and reversible assembly of graphene oxide/polyvinyl alcohol hybrid stabilized Pickering emulsions and their templating for macroporous composite hydrogels. Carbon, 2017, 111, 38-47.	10.3	46
27	Molecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repair. Biomaterials, 2020, 232, 119644.	11.4	45
28	Dual nanocomposite multihollow polymer microspheres prepared by suspension polymerization based on a multiple pickering emulsion. Polymer Chemistry, 2010, 1, 75-77.	3.9	42
29	Graphene Oxide Hybrid Supramolecular Hydrogels with Selfâ€Healable, Bioadhesive and Stimuliâ€Responsive Properties and Drug Delivery Application. Macromolecular Materials and Engineering, 2018, 303, 1700660.	3.6	42
30	Facile Fabrication of Hybrid Colloidosomes with Alginate Gel Cores and Shells of Porous CaCO3 Microparticles. ChemPhysChem, 2007, 8, 1157-1160.	2.1	39
31	Selfâ€Stabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahighâ€Rate and Largeâ€Capacity Lithiumâ€Metal Anode. Angewandte Chemie, 2020, 132, 2071-2076.	2.0	39
32	Injectable Supramolecular Hydrogel for Locoregional Immune Checkpoint Blockade and Enhanced Cancer Chemo-Immunotherapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33874-33884.	8.0	38
33	A Rapidly Selfâ€Healing Host–Guest Supramolecular Hydrogel with High Mechanical Strength and Excellent Biocompatibility. Angewandte Chemie, 2018, 130, 9146-9150.	2.0	36
34	Quadruple hydrogen bonds and thermo-triggered hydrophobic interactions generate dynamic hydrogels to modulate transplanted cell retention. Biomaterials Science, 2019, 7, 1286-1298.	5.4	36
35	Multicompartmental Janus Microbeads from Branched Polymers by Single-Emulsion Droplet Microfluidics. Langmuir, 2013, 29, 12657-12662.	3.5	35
36	A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors. ACS Applied Materials & Supercapacitors. ACS Applied	8.0	34

#	Article	IF	Citations
37	Temperature-Controlled Reversible Exposure and Hiding of Antimicrobial Peptides on an Implant for Killing Bacteria at Room Temperature and Improving Biocompatibility in Vivo. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 35830-35837.	8.0	34
38	One-pot fabrication of magnetic nanocomposite microcapsules. Materials Letters, 2009, 63, 884-886.	2.6	33
39	Cellulose nanofibrils-based hybrid foam generated from Pickering emulsion toward high-performance microwave absorption. Carbohydrate Polymers, 2021, 255, 117333.	10.2	33
40	Transparent and strong polymer nanocomposites generated from Pickering emulsion gels stabilized by cellulose nanofibrils. Carbohydrate Polymers, 2019, 224, 115202.	10.2	32
41	Conductive and antimicrobial macroporous nanocomposite hydrogels generated from air-in-water Pickering emulsions for neural stem cell differentiation and skin wound healing. Biomaterials Science, 2020, 8, 6957-6968.	5.4	31
42	Antimicrobial colloidal hydrogels assembled by graphene oxide and thermo-sensitive nanogels for cell encapsulation. Journal of Colloid and Interface Science, 2018, 513, 314-323.	9.4	30
43	Antibacterial peptide-modified collagen nanosheet for infected wound repair. Smart Materials in Medicine, 2021, 2, 172-181.	6.7	30
44	Waterborne polymer nanogels non-covalently crosslinked by multiple hydrogen bond arrays. Polymer Chemistry, 2013, 4, 387-392.	3.9	27
45	Study of Pickering emulsion stabilized by sulfonated cellulose nanowhiskers extracted from sisal fiber. Colloid and Polymer Science, 2015, 293, 963-974.	2.1	27
46	PMMA@SCNC composite microspheres prepared from pickering emulsion template as curcumin delivery carriers. Journal of Applied Polymer Science, 2018, 135, 46127.	2.6	22
47	Fabrication of Cellulose Nanofiber/Reduced Graphene Oxide/Nitrile Rubber Flexible Films Using Pickering Emulsion Technology for Electromagnetic Interference Shielding and Piezoresistive Sensor. Macromolecular Materials and Engineering, 2021, 306, 2100070.	3.6	21
48	Pickering emulsion strategy for high compressive carbon aerogel as lightweight electromagnetic interference shielding material and flexible pressure sensor. Ceramics International, 2021, 47, 23433-23443.	4.8	21
49	Integrin-binding pro-survival peptide engineered silk fibroin nanosheets for diabetic wound healing and skin regeneration. Chemical Engineering Journal, 2020, 398, 125617.	12.7	21
50	Multiple Hydrogen-Bond Array Reinforced Cellular Polymer Films from Colloidal Crystalline Assemblies of Soft Latex Particles. ACS Macro Letters, 2012, 1, 603-608.	4.8	20
51	Visualizing phase transition of upper critical solution temperature (UCST) polymers with AIE. Science China Chemistry, 2021, 64, 403-407.	8.2	19
52	Multifunctional carbon foam with hollow microspheres and a concave–convex microstructure for adjustable electromagnetic wave absorption and wearable applications. Journal of Materials Chemistry A, 2021, 9, 25982-25998.	10.3	19
53	Simple Hierarchical Interface Design Strategy for Accelerating Solar Evaporation. Macromolecular Materials and Engineering, 2021, 306, 2000640.	3.6	18
54	Facile fabrication of versatile PMMA/CNF–NaYF4:Yb/Er composite microspheres by Pickering emulsion system. Materials Letters, 2016, 166, 55-58.	2.6	17

#	Article	IF	Citations
55	Multi-stage hydrogel rockets with stage dropping-off by thermal/light stimulation. Journal of Materials Chemistry A, 2018, 6, 16838-16843.	10.3	16
56	Melatonin decorated 3D-printed beta-tricalcium phosphate scaffolds promoting bone regeneration in a rat calvarial defect model. Journal of Materials Chemistry B, 2019, 7, 3250-3259.	5.8	15
57	Transportation and release of Janus micromotors by two-stage rocket hydrogel. Journal of Materials Chemistry A, 2017, 5, 18442-18447.	10.3	14
58	AIE-Active and Thermoresponsive Alternating Polyurethanes of Bile Acid and PEG for Cell Imaging. ACS Applied Polymer Materials, 2019, 1, 2973-2980.	4.4	13
59	Thermal and frictional properties of mesoporous silica SBAâ€15/phenolic resin nanocomposites. Polymer Composites, 2017, 38, E351.	4.6	12
60	Novel Nanocellulose/Polymer Composite Aerogel as Solidâ€State Fluorescence Probe by Pickering Emulsion Route. Macromolecular Materials and Engineering, 2020, 305, 2000467.	3.6	12
61	Multifunction Hybrid Aerogel Capable of Reducing Silver Ions during Solar-Driven Interfacial Evaporation. ACS Sustainable Chemistry and Engineering, 2022, 10, 7463-7472.	6.7	11
62	Dynamic control of volume phase transitions of poly(<i>N</i> à€isopropylacrylamide) based microgels in water using hydrazideâ€aldehyde chemistry. Journal of Polymer Science Part A, 2014, 52, 1745-1754.	2.3	10
63	One-pot quaternization of dual-responsive poly(vinyl alcohol) with AlEgens for pH-switchable imaging and killing of bacteria. Materials Chemistry Frontiers, 2020, 4, 2635-2645.	5.9	10
64	Macroporous Adhesive Nanoâ€Enabled Hydrogels Generated from Airâ€inâ€Water Emulsions. Macromolecular Bioscience, 2022, 22, e2100491.	4.1	9
65	Airâ€Inâ€Water Emulsion Solely Stabilized by Gelatin Methacryloyl and Templating for Macroporous Nanocomposite Hydrogels. Macromolecular Chemistry and Physics, 2019, 220, 1800500.	2.2	8
66	Engineering air-in-water emulsion as adaptable multifunctional sealant. Chemical Engineering Journal, 2022, 429, 132200.	12.7	8
67	Hierarchical porous aero-cryogels for wind energy enhanced solar vapor generation. Cellulose, 2022, 29, 953-966.	4.9	8
68	Responsive Polypseudorotaxane Hydrogels Triggered by a Compatible Stimulus of CO 2. Macromolecular Chemistry and Physics, 2019, 220, 1900071.	2.2	6
69	Preparation of Colloidosome Microcapsules Based on Particle Stabilized Photo-Crosslinkable Pickering Emulsions. Acta Chimica Sinica, 2012, 70, 1721.	1.4	6
70	Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria. Small, 2022, 18, e2107374.	10.0	6
71	Periostin Attenuates Cyclophosphamide-induced Bladder Injury by Promoting Urothelial Stem Cell Proliferation and Macrophage Polarization. Stem Cells Translational Medicine, 2022, 11, 659-673.	3.3	6
72	Shape-Recoverable Macroporous Nanocomposite Hydrogels Created via Ice Templating Polymerization for Noncompressible Wound Hemorrhage. ACS Biomaterials Science and Engineering, 2022, 8, 2076-2087.	5.2	5

#	Article	IF	CITATIONS
73	Glycopolymers Made from Polyrotaxanes Terminated with Bile Acids: Preparation, Selfâ€Assembly, and Targeting Delivery. Macromolecular Bioscience, 2019, 19, e1800478.	4.1	4
74	Robust cellulose nanofibrils reinforced poly(methyl methacrylate)/polystyrene binary blend composites with pebbleâ€shaped structure using Pickering emulsion gel. Polymers for Advanced Technologies, 2020, 31, 2676-2686.	3.2	4
75	Dynamical heterogeneity in the gelation process of a polymer solution with a lower critical solution temperature. Soft Matter, 2021, 17, 3222-3233.	2.7	2
76	Natural Dualâ€Crosslinked Selfâ€Healing Hydrogels for In Situ Wound Healing. Macromolecular Materials and Engineering, 2022, 307, .	3.6	2
77	Facile Preparation of Core-Shell Nanocomposite Microgels. Journal of Macromolecular Science - Physics, 2014, 53, 52-66.	1.0	1

Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria (Small) Tj ETQq0 0 0 rgBT /Overlock 10 Tf