Nicolas Minc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5049773/publications.pdf

Version: 2024-02-01

	201674	168389
3,217	27	53
citations	h-index	g-index
65	65	3588
docs citations	times ranked	citing authors
	citations 65	3,217 27 h-index 65 65

#	Article	IF	CITATIONS
1	Influence of Cell Geometry on Division-Plane Positioning. Cell, 2011, 144, 414-426.	28.9	338
2	Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14524-14529.	7.1	296
3	Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology, 2013, 15, 1405-1414.	10.3	226
4	Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature, 2016, 530, 495-498.	27.8	217
5	Mechanical Forces of Fission Yeast Growth. Current Biology, 2009, 19, 1096-1101.	3.9	156
6	Contributions of Turgor Pressure, the Contractile Ring, and Septum Assembly to Forces in Cytokinesis in Fission Yeast. Current Biology, 2012, 22, 1601-1608.	3.9	130
7	Use of self assembled magnetic beads for on-chip protein digestion. Lab on A Chip, 2005, 5, 935.	6.0	114
8	Quantitative Microfluidic Separation of DNA in Self-Assembled Magnetic Matrixes. Analytical Chemistry, 2004, 76, 3770-3776.	6.5	103
9	Predicting division plane position and orientation. Trends in Cell Biology, 2012, 22, 193-200.	7.9	97
10	Establishing New Sites of Polarization by Microtubules. Current Biology, 2009, 19, 83-94.	3.9	82
11	Symmetry Breaking in Spore Germination Relies on an Interplay between Polar Cap Stability and Spore Wall Mechanics. Developmental Cell, 2014, 28, 534-546.	7.0	80
12	Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Developmental Cell, 2018, 45, 496-511.e6.	7.0	76
13	Electrical Control of Cell Polarization in the Fission Yeast Schizosaccharomyces pombe. Current Biology, 2010, 20, 710-716.	3.9	74
14	Electrochemical Control of Cell and Tissue Polarity. Annual Review of Cell and Developmental Biology, 2014, 30, 317-336.	9.4	69
15	Shape–motion relationships of centering microtubule asters. Journal of Cell Biology, 2016, 212, 777-787.	5.2	68
16	Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nature Communications, 2017, 8, 13998.	12.8	68
17	Functionalized magnetic micro- and nanoparticles: Optimization and application to $\hat{l}\frac{1}{4}$ -chip tryptic digestion. Electrophoresis, 2006, 27, 1811-1824.	2.4	67
18	How cells sense their own shape $\hat{a}\in$ " mechanisms to probe cell geometry and their implications in cellular organization and function. Journal of Cell Science, 2018, 131, .	2.0	64

#	Article	IF	CITATIONS
19	Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival. Developmental Cell, 2018, 45, 170-182.e7.	7.0	60
20	Generic Theoretical Models to Predict Division Patterns of Cleaving Embryos. Developmental Cell, 2016, 39, 667-682.	7.0	59
21	Physical forces determining the persistency and centring precision of microtubule asters. Nature Physics, 2018, 14, 848-854.	16.7	51
22	Controlled proteolysis of normal and pathological prion protein in a microfluidic chip. Lab on A Chip, 2008, 8, 294.	6.0	47
23	The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos. Developmental Cell, 2020, 54, 395-409.e7.	7.0	40
24	Bioelectric signaling and the control of cardiac cell identity in response to mechanical forces. Science, 2021, 374, 351-354.	12.6	40
25	Motion of single long DNA molecules through arrays of magnetic columns. Electrophoresis, 2005, 26, 362-375.	2.4	39
26	Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 808, 15-24.	2.3	38
27	Mechanics and morphogenesis of fission yeast cells. Current Opinion in Microbiology, 2015, 28, 36-45.	5.1	34
28	Non-Markovian Transport of DNA in Microfluidic Post Arrays. Physical Review Letters, 2005, 94, 198105.	7.8	30
29	Gradients of phosphatidylserine contribute to plasma membrane charge localization and cell polarity in fission yeast. Molecular Biology of the Cell, 2017, 28, 210-220.	2.1	30
30	Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Physical Biology, 2021, 18, 041501.	1.8	29
31	The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions. ELife, 2017, 6, .	6.0	29
32	A Positive Feedback between Growth and Polarity Provides Directional Persistency and Flexibility to the Process of Tip Growth. Current Biology, 2018, 28, 3342-3351.e3.	3.9	28
33	Asymmetric division through a reduction of microtubule centering forces. Journal of Cell Biology, 2019, 218, 771-782.	5.2	28
34	Cytoskeleton Force Exertion in Bulk Cytoplasm. Frontiers in Cell and Developmental Biology, 2020, 8, 69.	3.7	28
35	Contribution of cytoplasm viscoelastic properties to mitotic spindle positioning. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	28
36	Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex. Scientific Reports, 2017, 7, 17308.	3.3	26

#	Article	IF	Citations
37	Cells under pressure: how yeast cells respond to mechanical forces. Trends in Microbiology, 2022, 30, 495-510.	7.7	26
38	Systematic mapping of cell wall mechanics in the regulation of cell morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13833-13838.	7.1	24
39	Electrochemical Regulation of Budding Yeast Polarity. PLoS Biology, 2014, 12, e1002029.	5 . 6	23
40	Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature. Current Biology, 2015, 25, 2677-2683.	3.9	21
41	Electrochemical regulation of cell polarity and the cytoskeleton. Cytoskeleton, 2012, 69, 601-612.	2.0	20
42	Measurement and manipulation of cell size parameters in fission yeast. Methods in Cell Biology, 2015, 125, 423-436.	1.1	19
43	Detection of surface forces by the cell-wall mechanosensor Wsc1 in yeast. Developmental Cell, 2021, 56, 2856-2870.e7.	7.0	15
44	In-capillary non-covalent labeling of insulin and one gastrointestinal peptide for their analyses by capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography A, 2005, 1087, 203-209.	3.7	11
45	InÂVitro Reconstitution of Dynein Force Exertion in a Bulk Viscous Medium. Current Biology, 2020, 30, 4534-4540.e7.	3.9	11
46	Manipulating Cell Shape by Placing Cells into Micro-fabricated Chambers. Methods in Molecular Biology, 2014, 1136, 281-290.	0.9	10
47	Cell division geometries as central organizers of early embryo development. Seminars in Cell and Developmental Biology, 2022, 130, 3-11.	5.0	8
48	Dissecting the Molecular Mechanisms of Electrotactic Effects. Advances in Wound Care, 2014, 3, 139-148.	5.1	6
49	An image analysis method to survey the dynamics of polar protein abundance in the regulation of tip growth. Journal of Cell Science, 2020, 133, .	2.0	5
50	Microfabricated Chambers as Force Sensors for Probing Forces of Fungal Growth. Methods in Cell Biology, 2014, 120, 215-226.	1.1	3
51	Scaling properties of centering forces. Europhysics Letters, 2019, 125, 48001.	2.0	3
52	Modeling Embryonic Cleavage Patterns. Methods in Molecular Biology, 2019, 1920, 393-406.	0.9	2
53	Anthrax receptors position the spindle. Nature Cell Biology, 2013, 15, 11-13.	10.3	1
54	Magnetic Field-Based Lab-on-Chip Devices. , 2015, , 1681-1689.		1

#	Article	IF	CITATIONS
55	Autoassemblage de colloÃ⁻des magnétiques sur un réseau de plots en nickelÂ: Application Ã l'électrophorèse de longs ADN. Houille Blanche, 2007, 93, 34-38.	0.3	1
56	Magnetic Field-Based Lab-on-Chip Devices. , 2014, , 1-10.		0