Marie MÃ¹/₄nster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5049645/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of district heating in the future Danish energy system. Energy, 2012, 48, 47-55.	4.5	174
2	Balmorel open source energy system model. Energy Strategy Reviews, 2018, 20, 26-34.	3.3	165
3	Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessments. Journal of Cleaner Production, 2009, 17, 1331-1338.	4.6	154
4	Optimization of use of waste in the future energy system. Energy, 2011, 36, 1612-1622.	4.5	116
5	Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen. Energy, 2016, 107, 321-334.	4.5	105
6	Comparing Waste-to-Energy technologies by applying energy system analysis. Waste Management, 2010, 30, 1251-1263.	3.7	81
7	Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization. Energy, 2018, 153, 949-966.	4.5	80
8	Influence of individual heat pumps on wind power integration – Energy system investments and operation. Energy Conversion and Management, 2013, 75, 673-684.	4.4	79
9	The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050. Applied Energy, 2021, 289, 116685.	5.1	71
10	Use of waste for heat, electricity and transport—Challenges when performing energy system analysis. Energy, 2009, 34, 636-644.	4.5	67
11	Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review. Energy, 2016, 110, 116-128.	4.5	65
12	How to maximise the value of residual biomass resources: The case of straw in Denmark. Applied Energy, 2019, 250, 369-388.	5.1	55
13	TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish energy system. Energy Strategy Reviews, 2019, 23, 13-22.	3.3	54
14	System and market integration of wind power in Denmark. Energy Strategy Reviews, 2013, 1, 143-156.	3.3	49
15	Economic and environmental optimization of waste treatment. Waste Management, 2015, 38, 486-495.	3.7	47
16	Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy. Waste Management, 2013, 33, 1648-1658.	3.7	44
17	Challenges when performing economic optimization of waste treatment: A review. Waste Management, 2013, 33, 1918-1925.	3.7	42
18	Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses. European Journal of Operational Research, 2017, 262, 744-758.	3.5	42

Marie Münster

#	Article	IF	CITATIONS
19	Municipal solid waste available to the Chinese energy sector – Provincial projections to 2050. Waste Management, 2020, 112, 52-65.	3.7	42
20	Pathways to climate-neutral shipping: A Danish case study. Energy, 2019, 188, 116009.	4.5	41
21	Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection. Journal of Environmental Management, 2015, 157, 69-83.	3.8	38
22	Scenarios for sustainable heat supply and heat savings in municipalities - The case of HelsingÃ,r, Denmark. Energy, 2017, 137, 1252-1263.	4.5	34
23	Modelling of renewable gas and renewable liquid fuels in future integrated energy systems. Applied Energy, 2020, 268, 114869.	5.1	33
24	Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics. Applied Energy, 2022, 307, 118091.	5.1	32
25	Long-term affected energy production of waste to energy technologies identified by use of energy system analysis. Waste Management, 2010, 30, 2510-2519.	3.7	31
26	Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study. Energy, 2020, 199, 117408.	4.5	31
27	A methodology for designing flexible multi-generation systems. Energy, 2016, 110, 34-54.	4.5	29
28	Potential role of renewable gas in the transition of electricity and district heating systems. Energy Strategy Reviews, 2020, 27, 100446.	3.3	29
29	Competitiveness of a low specific power, low cut-out wind speed wind turbine in North and Central Europe towards 2050. Applied Energy, 2022, 306, 118043.	5.1	26
30	Impact and effectiveness of transport policy measures for a renewable-based energy system. Energy Policy, 2019, 133, 110900.	4.2	24
31	A method for aggregating external operating conditions in multi-generation system optimization models. Applied Energy, 2016, 166, 59-75.	5.1	23
32	Optimization of a flexible multi-generation system based on wood chip gasification and methanol production. Applied Energy, 2017, 192, 337-359.	5.1	22
33	Policy schemes, operational strategies and system integration of residential co-generation fuel cells. International Journal of Hydrogen Energy, 2013, 38, 3050-3063.	3.8	19
34	Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning. Applied Energy, 2019, 253, 113528.	5.1	18
35	Should residual biomass be used for fuels, power and heat, or materials? Assessing costs and environmental impacts for China in 2035. Energy and Environmental Science, 2022, 15, 1950-1966.	15.6	18
36	The climate footprint of imports of combustible waste in systems with high shares of district heating and variable renewable energy. Waste Management, 2018, 79, 800-814.	3.7	17

#	Article	IF	CITATIONS
37	Future waste treatment and energy systems – examples of joint scenarios. Waste Management, 2013, 33, 2457-2464.	3.7	16
38	The economic value of imports of combustible waste in systems with high shares of district heating and variable renewable energy. Waste Management, 2018, 79, 324-338.	3.7	16
39	STREAM–an energy scenario modelling tool. Energy Strategy Reviews, 2018, 21, 62-70.	3.3	14
40	Sector Coupling: Concepts, Potentials and Barriers. , 2020, , .		11