Prasun K Mandal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5049621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Optical Properties of the Imidazolium Ionic Liquids. Journal of Physical Chemistry B, 2005, 109, 9148-9153.	1.2	350
2	How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6]. Chemical Physics Letters, 2005, 402, 375-379.	1.2	224
3	Excitation-Wavelength-Dependent Fluorescence Behavior of Some Dipolar Molecules in Room-Temperature Ionic Liquids. Journal of Physical Chemistry A, 2004, 108, 9048-9053.	1.1	220
4	Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission. Physical Chemistry Chemical Physics, 2016, 18, 28274-28280.	1.3	143
5	Evidence of Ground-State Proton-Transfer Reaction of 3-Hydroxyflavone in Neutral Alcoholic Solvents. Journal of Physical Chemistry A, 2003, 107, 6334-6339.	1.1	133
6	Excitation wavelength dependent fluorescence behavior of the room temperature ionic liquids and dissolved dipolar solutes. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 113-120.	2.0	119
7	Fluorescence Studies in a Pyrrolidinium Ionic Liquid:Â Polarity of the Medium and Solvation Dynamics. Journal of Physical Chemistry B, 2005, 109, 15172-15177.	1.2	114
8	Solvation dynamics of Nile Red in a room temperature ionic liquid using streak camera. Physical Chemistry Chemical Physics, 2004, 6, 3106.	1.3	97
9	On the Molecular Origin of Photoluminescence of Nonblinking Carbon Dot. Journal of Physical Chemistry C, 2017, 121, 9634-9641.	1.5	72
10	A Simple and Versatile Route to Stable Quantum Dotâ^'Dye Hybrids in Nonaqueous and Aqueous Solutions. Journal of the American Chemical Society, 2008, 130, 17242-17243.	6.6	62
11	Extent of Shallow/Deep Trap States beyond the Conduction Band Minimum in Defect-Tolerant CsPbBr ₃ Perovskite Quantum Dot: Control over the Degree of Charge Carrier Recombination. Journal of Physical Chemistry Letters, 2020, 11, 1702-1707.	2.1	54
12	Highly Photoluminescent InP Based Core Alloy Shell QDs from Air-Stable Precursors: Excitation Wavelength Dependent Photoluminescence Quantum Yield, Photoluminescence Decay Dynamics, and Single Particle Blinking Dynamics. Journal of Physical Chemistry C, 2018, 122, 964-973.	1.5	53
13	Mechanicalâ€Bendingâ€Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angewandte Chemie - International Edition, 2020, 59, 19878-19883.	7.2	49
14	Phenalenyl in a Different Role: Catalytic Activation through the Nonbonding Molecular Orbital. ACS Catalysis, 2014, 4, 4307-4319.	5.5	40
15	Spectral and Temporal Optical Behavior of Blue-, Green-, Orange-, and Red-Emitting CdSe-Based Core/Gradient Alloy Shell/Shell Quantum Dots: Ensemble and Single-Particle Investigation Results. Journal of Physical Chemistry C, 2016, 120, 3483-3491.	1.5	39
16	"Where does the fluorescing moiety reside in a carbon dot?―– Investigations based on fluorescence anisotropy decay and resonance energy transfer dynamics. Physical Chemistry Chemical Physics, 2018, 20, 2251-2259.	1.3	30
17	Carbon Dot with pH Independent Near-Unity Photoluminescence Quantum Yield in an Aqueous Medium: Electrostatics-Induced FA¶rster Resonance Energy Transfer at Submicromolar Concentration. Journal of Physical Chemistry Letters, 2018, 9, 5092-5099.	2.1	30
18	Nearly suppressed photoluminescence blinking of small-sized, blue–green–orange–red emitting single CdSe-based core/gradient alloy shell/shell quantum dots: correlation between truncation time and photoluminescence quantum yield. Physical Chemistry Chemical Physics, 2018, 20, 10332-10344.	1.3	29

#	Article	IF	CITATIONS
19	Why Does the Photoluminescence Efficiency Depend on Excitation Energy in Case of a Quantum Dot? A Case Study of CdSe-Based Core/Alloy Shell/Shell Quantum Dots Employing Ultrafast Pump–Probe Spectroscopy and Single Particle Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 6922-6933.	1.5	28
20	Near-Unity Photoluminescence Quantum Yield and Highly Suppressed Blinking in a Toxic-Metal-Free Quantum Dot. Journal of Physical Chemistry Letters, 2021, 12, 1426-1431.	2.1	27
21	Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands. Journal of Physical Chemistry B, 2016, 120, 3503-3510.	1.2	26
22	Fluorescence studies in environmentally benign solvents: solvation dynamics of Coumarin 102 in [BMIM][BF4]. Research on Chemical Intermediates, 2005, 31, 575-583.	1.3	23
23	Suppressed Blinking under Normal Air Atmosphere in Toxic-Metal-Free, Small Sized, InP-Based Core/Alloy-Shell/Shell Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 4330-4338.	2.1	23
24	Strong electron donation induced differential nonradiative decay pathways for para and meta GFP chromophore analogues. Physical Chemistry Chemical Physics, 2015, 17, 20515-20521.	1.3	21
25	Ultrafast Dynamics and Ultrasensitive Single-Particle Intermittency in Small-Sized Toxic Metal Free InP-Based Core/Alloy-Shell/Shell Quantum Dots: Excitation Wavelength Dependency Toward Variation of PLQY. Journal of Physical Chemistry C, 2019, 123, 28502-28510.	1.5	18
26	Ultrafast Dynamics of a Green Fluorescent Protein Chromophore Analogue: Competition between Excited-State Proton Transfer and Torsional Relaxation. Journal of Physical Chemistry B, 2016, 120, 9716-9722.	1.2	17
27	Instantaneous, room-temperature, open-air atmosphere, solution-phase synthesis of perovskite quantum dots through halide exchange employing non-metal based inexpensive HCl/HI: ensemble and single particle spectroscopy. Nanoscale Advances, 2019, 1, 3506-3513.	2.2	17
28	Chemical tweaking of a non-fluorescent GFP chromophore to a highly fluorescent coumarinic fluorophore: application towards photo-uncaging and stem cell imaging. RSC Advances, 2013, 3, 24021.	1.7	16
29	Solvent H-bond accepting ability induced conformational change and its influence towards fluorescence enhancement and dual fluorescence of hydroxy meta-GFP chromophore analogue. Physical Chemistry Chemical Physics, 2016, 18, 24332-24342.	1.3	15
30	On the Nanoscopic Environment a Neutral Fluorophore Experiences in Room Temperature Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 5051-5057.	1.5	14
31	Mechanicalâ€Bendingâ€Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angewandte Chemie, 2020, 132, 20050-20055.	1.6	14
32	Unravelling halide-dependent charge carrier dynamics in CsPb(Br/Cl) ₃ perovskite nanocrystals. Nanoscale, 2021, 13, 3654-3661.	2.8	13
33	On the heterogeneity of fluorescence lifetime of room temperature ionic liquids: onset of a journey for exploring red emitting dyes. Chemical Communications, 2012, 48, 6250.	2.2	12
34	Monogalactopyranosides of fluorescein and fluorescein methyl ester: synthesis, enzymatic hydrolysis by biotnylated β-galactosidase, and determination of translational diffusion coefficient. Carbohydrate Research, 2012, 358, 40-46.	1.1	10
35	Meta-Fluors—A Unique Way To Create a 200 Da Ultrasmall Fluorophore Emitting in Red with Intense Stokes/Solvatochromic Shift: Imaging Subcellular Nanopolarity in Live Stem Cells. Journal of Physical Chemistry C, 2019, 123, 24786-24792	1.5	10
36	Innovative Strategy Toward Red Emission: Single-Benzenic, Ultrasmall <i>meta</i> -Fluorophores. Journal of Physical Chemistry C, 2020, 124, 27049-27054.	1.5	10

Prasun K Mandal

#	Article	IF	CITATIONS
37	Excitation-Energy-Dependent Photoluminescence Quantum Yield is Inherent to Optically Robust Core/Alloy-Shell Quantum Dots in a Vast Energy Landscape. Journal of Physical Chemistry Letters, 2022, 13, 2404-2417.	2.1	10
38	Room Temperature Ionic Liquids as Media for Photophysical Studies. Journal of the Chinese Chemical Society, 2006, 53, 247-252.	0.8	8
39	Interaction of alkali, alkaline earth and transition metal ions with a ketocyanine dye: A comparative electronic spectroscopic study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 99, 37-45.	2.0	8
40	What type of nanoscopic environment does a cationic fluorophore experience in room temperature ionic liquids?. Physical Chemistry Chemical Physics, 2015, 17, 16587-16593.	1.3	8
41	Near-Ergodic CsPbBr ₃ Perovskite Nanocrystal with Minimal Statistical Aging. Journal of Physical Chemistry Letters, 2021, 12, 10169-10174.	2.1	7
42	Fluorescence response of mono- and tetraazacrown derivatives of 4-aminophthalimide with and without some transition and post transition metal ions. Journal of Materials Chemistry, 2005, 15, 2854.	6.7	5
43	Ultrafast dynamics and ultrasensitive single particle spectroscopy of optically robust core/alloy shell semiconductor quantum dots. Physical Chemistry Chemical Physics, 2022, 24, 8578-8590.	1.3	4
44	Correlation between size of nano-aggregates and excitation wavelength dependent fluorescence emission in room temperature ionic liquids: A case study with emim[FAP]. Chemical Physics Impact, 2021, 3, 100054.	1.7	4
45	Hydrophobicity-Dependent Heterogeneous Nanoaggregates and Fluorescence Dynamics in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2022, 126, 1551-1557.	1.2	2
46	Electronic spectral study of interaction of electron donor – acceptor dyes in the ground and excited state with a metal ion. Effect of molecular structure of the dye. Journal of Luminescence, 2014, 145, 25-32.	1.5	1
47	Reply to the â€~Comment on ""Where does the fluorescing moiety reside in a carbon dot?â€â€" Investigations based on fluorescence anisotropy decay and resonance energy transfer dynamicsâ€â€™ by H. C. Joshi, Phys. Chem. Chem. Phys., 2019, 21, DOI: 10.1039/c9cp00136k. Physical Chemistry Chemical Physics, 2019, 21, 13370-13373.	1.3	0