Hartmut F Witte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/504944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and Control of a Flapping Wing System Test Bench. Advances in Intelligent Systems and Computing, 2020, , 34-42.	0.5	1
2	Towards rich motion skills with the lightweight quadruped robot Serval. Adaptive Behavior, 2020, 28, 129-150.	1.1	13
3	Design of a Bioinspired Variable Stiffness Sensor. , 2019, , .		1
4	PEDOT coating applied on thick film gold electrodes for increased miniaturization capability. Progress in Organic Coatings, 2019, 135, 545-554.	1.9	5
5	Surface properties and biocompatibility of thick film materials used in ceramic bioreactors. Materialia, 2019, 5, 100213.	1.3	3
6	Force plates may be used for dynamic analyses of endoprostheses explantation procedures. Biomedizinische Technik, 2019, 64, 243-245.	0.9	0
7	Estimation to Use the Stick Figure of Kinect® Version 2 for Digital Anthropometry. Advances in Intelligent Systems and Computing, 2019, , 530-543.	0.5	0
8	Towards Rich Motion Skills with the Lightweight Quadruped Robot Serval - A Design, Control and Experimental Study. Lecture Notes in Computer Science, 2018, , 41-55.	1.0	9
9	Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture. Biosensors, 2018, 8, 37.	2.3	10
10	Threeâ€dimensional imaging of the fibrous microstructure of Achilles tendon entheses in <i>Mus musculus</i> . Journal of Anatomy, 2018, 233, 370-380.	0.9	12
11	Quadruped locomotion. , 2018, , .		3
12	Kinematic response in limb and body posture to sensory feedback from carpal sinus hairs in the rat () Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
13	LTCC-based micro plasma source for the selective treatment of cell cultures. , 2017, , .		3
14	Novel wireless measurement system of pressure dedicated to in vivo studies. Current Directions in Biomedical Engineering, 2016, 2, 123-127.	0.2	0

15	Analysis of the vibrissa parametric resonance causing a signal amplification during whisking behaviour. Journal of Bionic Engineering, 2016, 13, 312-323.	2.7	10
16	Development of a New Information Interface for Elderly Using Vibrations. Advances in Intelligent Systems and Computing, 2016, , 751-759.	0.5	0
17	Calculation of muscle forces during normal gait under consideration of femoral bending moments. Medical Engineering and Physics, 2016, 38, 1008-1015.	0.8	5

¹⁸Exploring the shock response of spider webs. Journal of the Mechanical Behavior of Biomedical
Materials, 2016, 56, 1-5.1.520

#	Article	IF	CITATIONS
19	LTCC based bioreactors for cell cultivation. IOP Conference Series: Materials Science and Engineering, 2016, 104, 012001.	0.3	14
20	Comparing the effect of different spine and leg designs for a small bounding quadruped robot. , 2015, ,		60
21	The role of vibrissal sensing in forelimb position control during travelling locomotion in the rat (Rattus norvegicus, Rodentia). Zoology, 2015, 118, 51-62.	0.6	15
22	A computational model for dynamic analysis of the human gait. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 799-804.	0.9	8
23	Investigation of Sensitivity of Foot Soles to Vibrational Stimuli: First Results for Developers of Information Interfaces. Lecture Notes in Computer Science, 2015, , 290-299.	1.0	1
24	Phases of Technical Gesture Recognition. Lecture Notes in Computer Science, 2015, , 130-139.	1.0	1
25	IMPROVING RUNNING SMOOTHNESS OF WHEG-DRIVEN SYSTEMS WHILE MAINTAINING THE HIGH VALUED OBSTACLE PERFORMANCE. , 2015, , .		Ο
26	Characterizing the Substrate Contact of Carpal Vibrissae of Rats during Locomotion. Lecture Notes in Computer Science, 2014, , 399-401.	1.0	2
27	A Phase-Shifting Double-Wheg-Module for Realization of Wheg-Driven Robots. Lecture Notes in Computer Science, 2014, , 97-107.	1.0	2
28	Animal Vibrissae: Modeling and Adaptive Control of Bio-inspired Sensors. Lecture Notes in Computer Science, 2013, , 159-170.	1.0	3
29	Biomechatronics is not just biomimetics. , 2013, , .		2
30	A miniaturized laser-Doppler-system in the ear canal. , 2013, , .		1
31	A Small-Sized Underactuated Biologically Inspired Aquatic Robot. Lecture Notes in Computer Science, 2013, , 374-377.	1.0	Ο
32	Characterization of Statical Properties of Rat's Whisker System. IEEE Sensors Journal, 2012, 12, 340-349.	2.4	19
33	BioMEMS for Processing and Testing of Hydrogel-Based Bio-Interfaces. Biomedizinische Technik, 2012, 57, .	0.9	Ο
34	Structural Characterization of the Whisker System of the Rat. IEEE Sensors Journal, 2012, 12, 332-339.	2.4	47
35	Segmented flow microfluidics in multilumen tubing. Biomedizinische Technik, 2012, 57, .	0.9	0
36	WARMOR: Whegs Adaptation and Reconfiguration of MOdular Robot with Tunable Compliance. Lecture Notes in Computer Science, 2012, , 345-346.	1.0	2

#	Article	IF	CITATIONS
37	Reducing complexness of control by intelligent mechanics in undulant swimming robots. International Journal of Design and Nature and Ecodynamics, 2012, 7, 1-13.	0.3	3
38	Integration of 3-D cell cultures in fluidic microsystems for biological screenings. Engineering in Life Sciences, 2011, 11, 140-147.	2.0	8
39	Cell cultures in microsystems: Biocompatibility aspects. Biotechnology and Bioengineering, 2011, 108, 687-693.	1.7	6
40	Influence of various types of damage on the fracture strength of ceramic femoral heads. Biomedizinische Technik, 2011, 56, 333-339.	0.9	16
41	Fabrication of a surface stress-based PDMS micro-membrane biosensor. Microsystem Technologies, 2010, 16, 1001-1008.	1.2	17
42	A novel PDMS micro membrane biosensor based on the analysis of surface stress. Biosensors and Bioelectronics, 2010, 25, 2420-2424.	5.3	37
43	Biomechanical analyses of rat locomotion during walking and climbing as a base for the design and construction of climbing robots. , 2010, , .		5
44	Locomotion study of a single actuated, modular swimming robot. , 2010, , .		5
45	TOWARDS AN ADHESIVE GRIPPING MODULE FOR HANDLING TASKS AND SMALL-SIZED CLIMBING ROBOTS. , 2010, , .		0
46	MECHANICAL DESIGN OF A CLIMBING ROBOT BASED ON BIOMECHANICAL ANALYSES. , 2010, , .		0
47	TOWARDS COMPLIANT DRIVES FOR MODULAR CLIMBING ROBOTS. , 2010, , .		Ο
48	Ramp-Up-Effects in Spatial Aware Recommender Systems. , 2009, , .		2
49	A modular BioMEMS platform for new procedures and experiments in tissue engineering. Journal of Micromechanics and Microengineering, 2009, 19, 074013.	1.5	6
50	In vivo-Messung der Relativbewegungen von Fragmenten gebrochener Langknochen. Biomedizinische Technik, 2009, , 365-366.	0.9	1
51	A Modular Concept for a Biologically Inspired Robot. Lecture Notes in Control and Information Sciences, 2009, , 391-400.	0.6	5
52	Concept of a modular climbing robot. , 2009, , .		6
53	A modular robot climbing on pipe-like structures. , 2009, , .		8
54	Automated control of micromanipulators - A tool for BioMEMS based cell culture. , 2009, , .		1

#	Article	IF	CITATIONS
55	Microsystems for the Characterization of 3D-ECM Analogous Bio-Interfaces. IFMBE Proceedings, 2009, , 94-97.	0.2	2
56	Application of Otoplastics to Increase the Reproducibility of OAE-analyses. IFMBE Proceedings, 2009, , 1492-1495.	0.2	0
57	Diagnostics of Human Body Stem Motor Functions by Systematic Provocation Method. IFMBE Proceedings, 2009, , 2150-2152.	0.2	0
58	Design of an Assistance System for Elderly Based on Analyses of Needs and Acceptance. Lecture Notes in Computer Science, 2009, , 96-105.	1.0	6
59	Improvement of the Design Quality of 3D-Input Devices Using Motion Analyses and Biomechanical Comparisons. Lecture Notes in Computer Science, 2009, , 276-285.	1.0	0
60	INSPIRAT – TOWARDS A BIOLOGICALLY INSPIRED CLIMBING ROBOT FOR THE INSPECTION OF LINEAR STRUCTURES. , 2008, , .		11
61	Legs evolved only at the end!. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 185-198.	1.6	23
62	The human skin as paragon of mechanical sensitive and adaptive coating. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, S139.	0.8	0
63	Interactions between Motions of the Trunk and the Angle of Attack of the Forelimbs in Synchronous Gaits of the Pika (Ochotona rufescens). , 2006, , 69-77.		15
64	Kinematisches Modell und Dynamiksimulation vierbeinigen Laufens von Sägetieren. , 2005, , 201-223.		0
65	JOINT ENERGY BALANCES: THE COMMITMENT TO THE SYNCHRONIZATION OF MEASURING SYSTEMS. Journal of Mechanics in Medicine and Biology, 2005, 05, 139-149.	0.3	5
66	Musculoskeletal support of lumbar spine stability. Pathophysiology, 2005, 12, 257-265.	1.0	46
67	Biomimetic robotics should be based on functional morphology. Journal of Anatomy, 2004, 204, 331-342.	0.9	36
68	Patellofemoral Contact Characteristics in Total Knee Prostheses with and Without Anterior Patellar Flange. Journal of Applied Biomechanics, 2004, 20, 144-152.	0.3	1
69	Correspondence Letter. Journal of Biomechanics, 2003, 36, 303-304.	0.9	8
70	Die vaskulĀ r e Anatomie der vorderen Bauchwand: Ein Beitrag zur Vermeidung von GefĀ ¤ Ÿverletzungen bei der laparoskopischen Chirurgie. Visceral Medicine, 2003, 19, 81-85.	0.5	0
71	ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of Biomechanics, 2002, 35, 543-548.	0.9	2,491
72	Basic limb kinematics of small therian mammals. Journal of Experimental Biology, 2002, 205, 1315-1338.	0.8	223

#	Article	IF	CITATIONS
73	Torque patterns of the limbs of small therian mammals during locomotion on flat ground. Journal of Experimental Biology, 2002, 205, 1339-1353.	0.8	83
74	Basic limb kinematics of small therian mammals. Journal of Experimental Biology, 2002, 205, 1315-38.	0.8	164
75	Torque patterns of the limbs of small therian mammals during locomotion on flat ground. Journal of Experimental Biology, 2002, 205, 1339-53.	0.8	65
76	Retropatellar contact characteristics in total knee arthroplasty with and without patellar resurfacing. International Orthopaedics, 2000, 24, 191-193.	0.9	18
77	Der Einfluß von Kniegelenkbeugung und Femurrotation auf den retropatellaren Kontakt des menschlichen Kniegelenkes - Influence of Flexion of the Knee and Femoral Rotation on Retröpatellar Contact in Humans. Biomedizinische Technik, 1999, 44, 334-338.	0.9	9
78	Anatomic guidelines for the prevention of abdominal wall hematoma induced by trocar placement. Surgical and Radiologic Anatomy, 1999, 21, 87-89.	0.6	32
79	Topographical principles and peculiarities of operative access in lumbar disc extrusion. Der Orthopade, 1999, 28, 572-578.	0.7	Ο
80	Operieren und PrÃ p arieren an der Leiche – ein neues Ausbildungskonzept für die minimalinvasive Chirurgie. Visceral Medicine, 1999, 15, 46-48.	0.5	0
81	Epiduroskopie mit Zugang über den Sakralkanal - Einige konstruktive Anforderungen an Instrumente aus anatomischer und biomechanischer Sicht. Biomedizinische Technik, 1997, 42, 24-29.	0.9	6
82	lst die indirekte Posturographie mittels Kraftmeßplatten der direkten Posturographie durch Bewegungsanalyse gleichwertig? Eine physikalische Betrachtung - Is Indirect Posturography Using Force Plates Equally as Good as Direct Posturography Employing Movements Analysis? Physical considerations. Biomedizinische Technik, 1997, 42, 280-283.	0.9	1
83	Muskelkraftmessung mittels Kernspin-Spektroskopie. Biomedizinische Technik, 1997, 42, 79-80.	0.9	1
84	A Calculation of the Forces Acting on the Human Acetabulum during Walking. Cells Tissues Organs, 1997, 160, 269-280.	1.3	24
85	Is Elastic Energy Storage of Quantitative Relevance for the Functional Morphology of the Human Locomotor Apparatus?. Cells Tissues Organs, 1997, 158, 106-111.	1.3	10
86	Size Influences on Primate Locomotion and Body Shape, with Special Emphasis on the Locomotion of â€~Small Mammals'. Folia Primatologica, 1996, 66, 93-112.	0.3	49
87	Transfer of biological principles into the construction of quadruped walking machines. , 0, , .		20
88	Finite Element Analysis of the Membrane Used in a Novel BioMEMS. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 3, 51-57.	0.7	5