
## Maria G Masucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5048571/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Epstein-Barr virus deubiquitinase BPLF1 targets SQSTM1/p62 to inhibit selective autophagy.<br>Autophagy, 2021, 17, 3461-3474.                                                                                                                         | 9.1 | 22        |
| 2  | Inhibition of selective autophagy by members of the herpesvirus ubiquitin-deconjugase family.<br>Biochemical Journal, 2021, 478, 2297-2308.                                                                                                               | 3.7 | 3         |
| 3  | The Epstein-Barr virus deubiquitinating enzyme BPLF1 regulates the activity of topoisomerase II during productive infection. PLoS Pathogens, 2021, 17, e1009954.                                                                                          | 4.7 | 10        |
| 4  | Herpesvirus ubiquitin deconjugases. Seminars in Cell and Developmental Biology, 2021, , .                                                                                                                                                                 | 5.0 | 2         |
| 5  | The Epstein–Barr virus nuclear antigen-1 upregulates the cellular antioxidant defense to enable B-cell growth transformation and immortalization. Oncogene, 2020, 39, 603-616.                                                                            | 5.9 | 16        |
| 6  | Interaction With 14-3-3 Correlates With Inactivation of the RIG-I Signalosome by Herpesvirus Ubiquitin Deconjugases. Frontiers in Immunology, 2020, 11, 437.                                                                                              | 4.8 | 20        |
| 7  | A bacterial genotoxin causes virus reactivation and genomic instability in Epstein–Barr virus infected epithelial cells pointing to a role of coâ€infection in viral oncogenesis. International Journal of Cancer, 2019, 144, 98-109.                     | 5.1 | 10        |
| 8  | Infection with genotoxinâ€producing <i>Salmonella enterica</i> synergises with loss of the tumour<br>suppressor <i>APC</i> in promoting genomic instability via the PI3K pathway in colonic epithelial cells.<br>Cellular Microbiology, 2019, 21, e13099. | 2.1 | 26        |
| 9  | 14-3-3 scaffold proteins mediate the inactivation of trim25 and inhibition of the type I interferon response by herpesvirus deconjugases. PLoS Pathogens, 2019, 15, e1008146.                                                                             | 4.7 | 44        |
| 10 | Herpesvirus deconjugases inhibit the IFN response by promoting TRIM25 autoubiquitination and functional inactivation of the RIG-I signalosome. PLoS Pathogens, 2018, 14, e1006852.                                                                        | 4.7 | 56        |
| 11 | A novel mechanism for regulation of the type I IFN response by herpesvirus deconjugases. Microbial<br>Cell, 2018, 5, 259-261.                                                                                                                             | 3.2 | 2         |
| 12 | Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization. Viruses, 2017, 9, 217.                                                                                                                                        | 3.3 | 18        |
| 13 | The Epstein-Barr virus miR-BHRF1-1 targets RNF4 during productive infection to promote the accumulation of SUMO conjugates and the release of infectious virus. PLoS Pathogens, 2017, 13, e1006338.                                                       | 4.7 | 18        |
| 14 | Oxidative stress enables Epstein–Barr virus-induced B-cell transformation by posttranscriptional regulation of viral and cellular growth-promoting factors. Oncogene, 2016, 35, 3807-3816.                                                                | 5.9 | 39        |
| 15 | Epstein–Barr virus encoded micro <scp>RNA</scp> s target <scp>SUMO</scp> â€regulated cellular<br>functions. FEBS Journal, 2014, 281, 4935-4950.                                                                                                           | 4.7 | 15        |
| 16 | Emerging topics in human tumor virology. Seminars in Cancer Biology, 2014, 26, 1-3.                                                                                                                                                                       | 9.6 | 0         |
| 17 | Tumor viruses and replicative immortality – Avoiding the telomere hurdle. Seminars in Cancer<br>Biology, 2014, 26, 43-51.                                                                                                                                 | 9.6 | 11        |
| 18 | An N-terminal SIAH-interacting motif regulates the stability of the ubiquitin specific protease (USP)-19.<br>Biochemical and Biophysical Research Communications, 2013, 433, 390-395                                                                      | 2.1 | 12        |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Gly–Ala repeat modulates the interaction of Epstein–Barr virus nuclear antigen-1 with cellular chromatin. Biochemical and Biophysical Research Communications, 2013, 431, 706-711.                     | 2.1  | 4         |
| 20 | Telomere dysfunction and activation of alternative lengthening of telomeres in B-lymphocytes<br>infected by Epstein–Barr virus. Oncogene, 2013, 32, 5522-5530.                                             | 5.9  | 47        |
| 21 | Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cellular Microbiology, 2013, 15, 98-113.                      | 2.1  | 97        |
| 22 | Caspase-1 Promotes Epstein-Barr Virus Replication by Targeting the Large Tegument Protein<br>Deneddylase to the Nucleus of Productively Infected Cells. PLoS Pathogens, 2013, 9, e1003664.                 | 4.7  | 40        |
| 23 | The Epstein–Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group<br>A proteins. Nucleic Acids Research, 2013, 41, 2950-2962.                                            | 14.5 | 40        |
| 24 | Interaction of Gamma-Herpesvirus Genome Maintenance Proteins with Cellular Chromatin. PLoS ONE, 2013, 8, e62783.                                                                                           | 2.5  | 4         |
| 25 | Herpes virus deneddylases interrupt the cullin-RING ligase neddylation cycle by inhibiting the binding of CAND1. Journal of Molecular Cell Biology, 2012, 4, 242-251.                                      | 3.3  | 27        |
| 26 | Ubiquitin Câ€ŧerminal hydrolase‣1 interacts with adhesion complexes and promotes cell migration,<br>survival, and anchorage independent growth. FASEB Journal, 2012, 26, 5060-5070.                        | 0.5  | 20        |
| 27 | The ubiquitin specific protease-4 (USP4) interacts with the S9/Rpn6 subunit of the proteasome.<br>Biochemical and Biophysical Research Communications, 2012, 427, 490-496.                                 | 2.1  | 9         |
| 28 | Remodeling of the epitope repertoire of a candidate idiotype vaccine by targeting to lysosomal degradation in dendritic cells. Cancer Immunology, Immunotherapy, 2012, 61, 881-892.                        | 4.2  | 5         |
| 29 | Helicobacter pylori affects the cellular deubiquitinase USP7 and ubiquitin-regulated components<br>TRAF6 and the tumour suppressor p53. International Journal of Medical Microbiology, 2011, 301, 213-224. | 3.6  | 26        |
| 30 | Thioredoxin 80-Activated-Monocytes (TAMs) Inhibit the Replication of Intracellular Pathogens. PLoS<br>ONE, 2011, 6, e16960.                                                                                | 2.5  | 18        |
| 31 | The Epstein–Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress. Leukemia, 2011, 25, 1017-1025.                                                                   | 7.2  | 73        |
| 32 | High Avidity Binding to DNA Protects Ubiquitylated Substrates from Proteasomal Degradation.<br>Journal of Biological Chemistry, 2011, 286, 19565-19575.                                                    | 3.4  | 12        |
| 33 | Bacterial genotoxin triggers FEN1-dependent RhoA activation, cytoskeleton remodeling and cell survival. Journal of Cell Science, 2011, 124, 2735-2742.                                                     | 2.0  | 35        |
| 34 | Characterization of an human leucocyte antigen A2â€restricted Epstein–Barr virus nuclear<br>antigenâ€1â€derived cytotoxic Tâ€lymphocyte epitope. Immunology, 2010, 129, 386-395.                           | 4.4  | 9         |
| 35 | A deneddylase encoded by Epstein–Barr virus promotes viral DNA replication by regulating the activity<br>of cullin-RING ligases. Nature Cell Biology, 2010, 12, 351-361.                                   | 10.3 | 103       |
| 36 | The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton. Cellular Microbiology, 2010, 12, 1622-1633.                                      | 2.1  | 24        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Translation Initiation Factor 3f (eIF3f) Exhibits a Deubiquitinase Activity Regulating Notch<br>Activation. PLoS Biology, 2010, 8, e1000545.                                                                       | 5.6 | 74        |
| 38 | Transcription Profiling of Epstein-Barr Virus Nuclear Antigen (EBNA)-1 Expressing Cells Suggests<br>Targeting of Chromatin Remodeling Complexes. PLoS ONE, 2010, 5, e12052.                                            | 2.5 | 23        |
| 39 | The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2313-2318. | 7.1 | 200       |
| 40 | EBV and genomic instability—A new look at the role of the virus in the pathogenesis of Burkitt's<br>lymphoma. Seminars in Cancer Biology, 2009, 19, 394-400.                                                           | 9.6 | 44        |
| 41 | The ubiquitin Câ€terminal hydrolase UCHâ€L1 regulates Bâ€cell proliferation and integrin activation.<br>Journal of Cellular and Molecular Medicine, 2009, 13, 1666-1678.                                               | 3.6 | 25        |
| 42 | The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. Journal of<br>Cellular and Molecular Medicine, 2009, 13, 1886-1895.                                                            | 3.6 | 68        |
| 43 | The ERâ€resident ubiquitinâ€specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO<br>Reports, 2009, 10, 755-761.                                                                              | 4.5 | 125       |
| 44 | Three Epstein–Barr virus latency proteins independently promote genomic instability by inducing DNA<br>damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene, 2009, 28, 3997-4008.           | 5.9 | 141       |
| 45 | The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. Journal of<br>Cellular and Molecular Medicine, 2009, 13, 1886-1895.                                                            | 3.6 | 48        |
| 46 | Inhibition of Serineâ€Peptidase Activity Enhances the Generation of a Survivinâ€Derived HLAâ€A2â€Presented<br>CTL Epitope in Colonâ€Carcinoma Cells. Scandinavian Journal of Immunology, 2008, 68, 579-588.            | 2.7 | 8         |
| 47 | Epstein-Barr Virus Encodes Three Bona Fide Ubiquitin-Specific Proteases. Journal of Virology, 2008, 82,<br>10477-10486.                                                                                                | 3.4 | 36        |
| 48 | The MAPK Signaling Cascade is a Central Hub in the Regulation of Cell Cycle, Apoptosis and<br>Cytoskeleton Remodeling by Tripeptidyl-Peptidase II. Gene Regulation and Systems Biology, 2008, 2,<br>GRSB.S882.         | 2.3 | 9         |
| 49 | A Bacterial Cytotoxin Identifies the RhoA Exchange Factor Net1 as a Key Effector in the Response to DNA Damage. PLoS ONE, 2008, 3, e2254.                                                                              | 2.5 | 69        |
| 50 | Expression of immune-related molecules in primary EBV positive chinese nasopharyngeal carcinoma:<br>Associated with latent membrane protein 1 (LMP1) expression. Cancer Biology and Therapy, 2007, 6,<br>1997-2004.    | 3.4 | 32        |
| 51 | Functional Inactivation of EBV-Specific T-Lymphocytes in Nasopharyngeal Carcinoma: Implications for Tumor Immunotherapy. PLoS ONE, 2007, 2, e1122.                                                                     | 2.5 | 85        |
| 52 | Epstein–Barr virus promotes genomic instability in Burkitt's lymphoma. Oncogene, 2007, 26, 5115-5123.                                                                                                                  | 5.9 | 89        |
| 53 | Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunology, Immunotherapy, 2007, 56, 1597-1604.                                                     | 4.2 | 135       |
| 54 | TPPII promotes genetic instability by allowing the escape from apoptosis of cells with activated mitotic checkpoints. Biochemical and Biophysical Research Communications, 2006, 346, 415-425.                         | 2.1 | 23        |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants. Journal of Clinical Virology, 2006, 36, 50-59.                                                                                                                    | 3.1  | 12        |
| 56 | Is the Activity of Partially Agonistic MHC:Peptide Ligands Dependent on the Quality of Immunological<br>Help?. Scandinavian Journal of Immunology, 2006, 64, 581-587.                                                                                         | 2.7  | 8         |
| 57 | The ubiquitin-specific protease USP25 interacts with three sarcomeric proteins. Cellular and Molecular Life Sciences, 2006, 63, 723-734.                                                                                                                      | 5.4  | 44        |
| 58 | Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Molecular<br>Carcinogenesis, 2006, 45, 260-269.                                                                                                                 | 2.7  | 103       |
| 59 | GFP reporter mouse models of UPS proteolytic function. FASEB Journal, 2006, 20, 1027-1028.                                                                                                                                                                    | 0.5  | 3         |
| 60 | Help signals provided by lymphokines modulate the activation and apoptotic programs induced by<br>partially agonistic peptides in specific cytotoxic T lymphocytes. European Journal of Immunology, 2005,<br>35, 2929-2939.                                   | 2.9  | 7         |
| 61 | Hepatitis C Virus Core Protein Induces an Anergic State Characterized by Decreased Interleukin-2<br>Production and Perturbation of Mitogen-Activated Protein Kinase Responses. Journal of Virology,<br>2005, 79, 2230-2239.                                   | 3.4  | 29        |
| 62 | Endoplasmic reticulum stress compromises the ubiquitin–proteasome system. Human Molecular<br>Genetics, 2005, 14, 2787-2799.                                                                                                                                   | 2.9  | 181       |
| 63 | Mitotic Infidelity and Centrosome Duplication Errors in Cells Overexpressing Tripeptidyl-Peptidase II.<br>Cancer Research, 2005, 65, 1361-1368.                                                                                                               | 0.9  | 46        |
| 64 | Regulation of lck degradation and refractory state in CD8+ cytotoxic T lymphocytes. Proceedings of the United States of America, 2005, 102, 9264-9269.                                                                                                        | 7.1  | 17        |
| 65 | The UBA2 Domain Functions as an Intrinsic Stabilization Signal that Protects Rad23 from Proteasomal Degradation. Molecular Cell, 2005, 18, 225-235.                                                                                                           | 9.7  | 103       |
| 66 | Regulation of expression of Bcl-2 protein family member Bim by T cell receptor triggering. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3011-3016.                                                             | 7.1  | 65        |
| 67 | Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2253-2258.                                             | 7.1  | 191       |
| 68 | Capacity of Epstein–Barr virus to infect monocytes and inhibit their development into dendritic cells<br>is affected by the cell type supporting virus replication. Journal of General Virology, 2004, 85,<br>2767-2778.                                      | 2.9  | 54        |
| 69 | Effect of combined T- and B-cell depletion of allogeneic HLA-mismatched bone marrow graft on the magnitude and kinetics of Epstein-Barr virus load in the peripheral blood of bone marrow transplant recipients. Clinical Transplantation, 2004, 18, 518-524. | 1.6  | 14        |
| 70 | Differential Regulation of MHC Class-I-Restricted and Unrestricted Cytotoxicity by the Us3 Protein<br>Kinase of Herpes Simplex Virus-1. Scandinavian Journal of Immunology, 2004, 60, 592-599.                                                                | 2.7  | 9         |
| 71 | Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors.<br>Nature Medicine, 2004, 10, 1321-1328.                                                                                                                 | 30.7 | 746       |
| 72 | Epstein–Barr virus oncogenesis and the ubiquitin–proteasome system. Oncogene, 2004, 23, 2107-2115.                                                                                                                                                            | 5.9  | 49        |

5

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The ubiquitin/proteasome system in Epstein–Barr virus latency and associated malignancies. Seminars<br>in Cancer Biology, 2003, 13, 69-76.                                                                                                    | 9.6  | 28        |
| 74 | Epstein–Barr virus: Induction and control of cell transformation. Journal of Cellular Physiology, 2003, 196, 207-218.                                                                                                                         | 4.1  | 69        |
| 75 | Pharmacological Disintegration of Lipid Rafts Decreases Specific Tetramer Binding and Disrupts the CD3 Complex and CD8 Heterodimer in Human Cytotoxic T Lymphocytes. Scandinavian Journal of Immunology, 2003, 57, 99-106.                    | 2.7  | 15        |
| 76 | The herpes simplex virus-1 Us3 protein kinase blocks CD8T cell lysis by preventing the cleavage of Bid by granzyme B. Cell Death and Differentiation, 2003, 10, 1320-1328.                                                                    | 11.2 | 48        |
| 77 | A transgenic mouse model of the ubiquitin/proteasome system. Nature Biotechnology, 2003, 21, 897-902.                                                                                                                                         | 17.5 | 214       |
| 78 | Inhibition of ubiquitin/proteasome-dependent proteolysis inSaccharomyces cerevisiaeby a Gly-Ala<br>repeat. FEBS Letters, 2003, 555, 397-404.                                                                                                  | 2.8  | 39        |
| 79 | The Us3 protein kinase of herpes simplex virus 1 blocks apoptosis and induces phosporylation of the Bcl-2 family member Bad. Experimental Cell Research, 2003, 291, 242-250.                                                                  | 2.6  | 54        |
| 80 | The Hepatitis C Virus Core Protein Modulates T Cell Responses by Inducing Spontaneous and Altering<br>T-cell Receptor-triggered Ca2+ Oscillations. Journal of Biological Chemistry, 2003, 278, 18877-18883.                                   | 3.4  | 57        |
| 81 | Stabilization of proteasomal substrates by viral repeats. New Comprehensive Biochemistry, 2003, 38, 535-549.                                                                                                                                  | 0.1  | 0         |
| 82 | Soluble Factors Released by Virus Specific Activated Cytotoxic Tâ€lymphocytes Induce Apoptotic Death<br>of Astroglioma Cell Lines. Brain Pathology, 2003, 13, 165-175.                                                                        | 4.1  | 4         |
| 83 | Functional p53 chimeras containing the Epstein-Barr virus Gly-Ala repeat are protected from Mdm2-<br>and HPV-E6-induced proteolysis. Proceedings of the National Academy of Sciences of the United States<br>of America, 2002, 99, 1532-1537. | 7.1  | 42        |
| 84 | Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Human Molecular<br>Genetics, 2002, 11, 2689-2700.                                                                                                             | 2.9  | 252       |
| 85 | MYC overexpression imposes a nonimmunogenic phenotype on Epstein-Barr virus-infected B cells.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4550-4555.                                        | 7.1  | 67        |
| 86 | Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. Journal of Cell Biology, 2002, 157, 417-427.                                                           | 5.2  | 197       |
| 87 | Epstein-Barr virus inhibits the development of dendritic cells by promoting apoptosis of their<br>monocyte precursors in the presence of granulocyte macrophage–colony-stimulating factor and<br>interleukin-4. Blood, 2002, 99, 3725-3734.   | 1.4  | 87        |
| 88 | Inhibition of ubiquitin-dependent proteolysis by a synthetic glycine-alanine repeat peptide that mimics<br>an inhibitory viral sequence. FEBS Letters, 2002, 522, 93-98.                                                                      | 2.8  | 15        |
| 89 | Stabilization signals: a novel regulatory mechanism in the ubiquitin/proteasome system. FEBS Letters, 2002, 529, 22-26.                                                                                                                       | 2.8  | 29        |
| 90 | Manipulation of immune responses by Epstein–Barr virus. Virus Research, 2002, 88, 71-86.                                                                                                                                                      | 2.2  | 31        |

| #   | Article                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Tetramer binding and secretion of interferon-Î <sup>3</sup> in response to antigenic stimulation are compatible with a range of affinities of MHC:TCR interaction and distinct programs of cytotoxic T-lymphocyte activation. Human Immunology, 2002, 63, 821-833.                  | 2.4  | 6         |
| 92  | Proteasome inhibitors reconstitute the presentation of cytotoxic T-cell epitopes in Epstein-Barr virus-associated tumors. International Journal of Cancer, 2002, 101, 532-538.                                                                                                      | 5.1  | 36        |
| 93  | The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cellular Microbiology, 2002, 4, 87-99.                                                                                       | 2.1  | 105       |
| 94  | Inhibition of the Ubiquitin-Proteasome System by a Viral Repetitive Sequence. , 2002, , 189-203.                                                                                                                                                                                    |      | 0         |
| 95  | cis-Inhibition of proteasomal degradation by viral repeats: impact of length and amino acid composition. FEBS Letters, 2001, 499, 137-142.                                                                                                                                          | 2.8  | 38        |
| 96  | Generation of Lymphoblastoid Cell Lines (LCLs). , 2001, 174, 125-127.                                                                                                                                                                                                               |      | 22        |
| 97  | c-myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells.<br>Nature Cell Biology, 2001, 3, 283-288.                                                                                                                                      | 10.3 | 103       |
| 98  | Cell-Based Fluorescence Assay for Human Immunodeficiency Virus Type 1 Protease Activity.<br>Antimicrobial Agents and Chemotherapy, 2001, 45, 2616-2622.                                                                                                                             | 3.2  | 41        |
| 99  | Different Programs of Activation-Induced Cell Death Are Triggered in Mature Activated CTL by<br>Immunogenic and Partially Agonistic Peptide Ligands. Journal of Immunology, 2001, 166, 989-995.                                                                                     | 0.8  | 16        |
| 100 | Generation of Polyclonal EBV-Specific CTL Cultures and Clones. , 2001, 174, 203-208.                                                                                                                                                                                                |      | 4         |
| 101 | Variations in proteasome subunit composition and enzymatic activity in B-lymphoma lines and normal<br>B cells. International Journal of Cancer, 2000, 88, 881-888.                                                                                                                  | 5.1  | 30        |
| 102 | Effect of Interleukin-7 on the In Vitro Development and Maturation of Monocyte Derived Human<br>Dendritic Cells. Scandinavian Journal of Immunology, 2000, 51, 361-371.                                                                                                             | 2.7  | 36        |
| 103 | Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis<br>in living cells. Nature Biotechnology, 2000, 18, 538-543.                                                                                                                      | 17.5 | 535       |
| 104 | Reply to â€~Ubiquitin/proteasome system'. Nature Biotechnology, 2000, 18, 807-807.                                                                                                                                                                                                  | 17.5 | 2         |
| 105 | Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant<br>lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood, 2000, 95,<br>807-814.                                                          | 1.4  | 315       |
| 106 | Inhibition of proteasomal degradation by the Gly-Ala repeat of Epstein-Barr virus is influenced by the<br>length of the repeat and the strength of the degradation signal. Proceedings of the National Academy<br>of Sciences of the United States of America, 2000, 97, 8381-8385. | 7.1  | 76        |
| 107 | Supermotif peptide binding and degeneracy of MHC: peptide recognition in an EBV peptide-specific CTL response with highly restricted TCR usage. Human Immunology, 2000, 61, 972-984.                                                                                                | 2.4  | 6         |
| 108 | A minimal glycine-alanine repeat prevents the interaction of ubiquitinated ll̂ºBα with the proteasome: a<br>new mechanism for selective inhibition of proteolysis. Nature Medicine, 1998, 4, 939-944.                                                                               | 30.7 | 128       |

| #   | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | High structural side chain specificity required at the second position of immunogenic peptides to obtain stable MHC/peptide complexes. FEBS Letters, 1998, 421, 95-99.                                                                                                                       | 2.8  | 12        |
| 110 | Random coil conformation of a Gly/Ala-rich insert in lκBα excludes structural stabilization as the mechanism for protection against proteasomal degradation. FEBS Letters, 1998, 440, 365-369.                                                                                               | 2.8  | 16        |
| 111 | Avoiding Immunity and Apoptosis: Manipulation of the Host Environment by Herpes Simplex Virus and Epstein-Barr Virus. Seminars in Virology, 1998, 8, 361-368.                                                                                                                                | 3.9  | 2         |
| 112 | Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the<br>Epstein-Barr virus nuclear antigen 1. Proceedings of the National Academy of Sciences of the United<br>States of America, 1997, 94, 12616-12621.                                     | 7.1  | 500       |
| 113 | Epitope-dependent Selection of Highly Restricted or Diverse T Cell Receptor Repertoires in Response to<br>Persistent Infection by Epstein-Barr Virus. Journal of Experimental Medicine, 1997, 186, 83-89.                                                                                    | 8.5  | 91        |
| 114 | HLA-A11-mediated protection from NK cell-mediated lysis. Human Immunology, 1996, 49, 1-12.                                                                                                                                                                                                   | 2.4  | 13        |
| 115 | Strategies of immunoescape in Epstein-Barr virus persistence and pathogenesis. Seminars in Virology, 1996, 7, 75-82.                                                                                                                                                                         | 3.9  | 9         |
| 116 | Defective presentation of MHC class I-restricted cytotoxic T-cell epitopes in Burkitt's lymphoma cells. ,<br>1996, 68, 251-258.                                                                                                                                                              |      | 42        |
| 117 | The life span of major histocompatibility complex-peptide complexes influences the efficiency of presentation and immunogenicity of two class I-restricted cytotoxic T lymphocyte epitopes in the Epstein-Barr virus nuclear antigen 4 Journal of Experimental Medicine, 1996, 183, 915-926. | 8.5  | 124       |
| 118 | Solvent exposed side chains of peptides bound to HLA A*1101 have similar effects on the reactivity of alloantibodies and specific TCR. International Immunology, 1996, 8, 927-938.                                                                                                           | 4.0  | 19        |
| 119 | Virus induced cancer: The lesson of Epstein—Barr virus. , 1996, , 161-175.                                                                                                                                                                                                                   |      | 0         |
| 120 | Mechanisms of allele-selective down-regulation of HLA class I in Burkitt's lymphoma. International<br>Journal of Cancer, 1995, 62, 90-96.                                                                                                                                                    | 5.1  | 30        |
| 121 | Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear<br>antigen-1. Nature, 1995, 375, 685-688.                                                                                                                                                   | 27.8 | 799       |
| 122 | Effect of Anchor Residue Modifications on the Stability of HLA-A11/Peptide Complexes. Biochemical and<br>Biophysical Research Communications, 1995, 206, 8-14.                                                                                                                               | 2.1  | 17        |
| 123 | Interleukin 10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells and downregulates HLA class I expression Journal of Experimental Medicine, 1994, 180, 2371-2376.                                                                                           | 8.5  | 299       |
| 124 | T cell responses and virus evolution: loss of HLA A11-restricted CTL epitopes in Epstein-Barr virus<br>isolates from highly A11-positive populations by selective mutation of anchor residues Journal of<br>Experimental Medicine, 1994, 179, 1297-1305.                                     | 8.5  | 171       |
| 125 | The epstein-barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in burkitt<br>lymphoma lines. International Journal of Cancer, 1994, 57, 240-244.                                                                                                                  | 5.1  | 132       |
| 126 | Epstein-Barr virus: adaptation to a life within the immune system. Trends in Microbiology, 1994, 2, 125-130.                                                                                                                                                                                 | 7.7  | 120       |

| #   | Article                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Epstein-Barr virus (EBV)-encoded membrane protein LMP1 from a nasopharyngeal carcinoma is<br>non-immunogenic in a murine model system, in contrast to a B cell-derived homologue. European<br>Journal of Cancer, 1994, 30, 84-88.                                                                              | 2.8  | 93        |
| 128 | Viral immunopathology of human tumors. Current Opinion in Immunology, 1993, 5, 693-700.                                                                                                                                                                                                                        | 5.5  | 28        |
| 129 | Viral and Cellular Factors Influence the Activity of the Epstein-Barr Virus BCR2 and BWR1 Promoters<br>in Cells of Different Phenotype. Virology, 1993, 193, 774-785.                                                                                                                                          | 2.4  | 29        |
| 130 | Selective induction of allostimulatory capacity after 5-azaC treatment of EBV carrying but not EBV negative burkitt lymphoma cell lines. Molecular Immunology, 1993, 30, 441-450.                                                                                                                              | 2.2  | 9         |
| 131 | Transformation-Associated Epstein-Barr Virus Antigens as Targets for Immune Attack. Annals of the<br>New York Academy of Sciences, 1993, 690, 86-100.                                                                                                                                                          | 3.8  | 9         |
| 132 | An HLA-A11-specific motif in nonamer peptides derived from viral and cellular proteins Proceedings of the United States of America, 1993, 90, 2217-2221.                                                                                                                                                       | 7.1  | 89        |
| 133 | HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population. Science, 1993, 260, 98-100.                                                                                                                                                                                                 | 12.6 | 272       |
| 134 | Overâ€expression of câ€ <i>myc</i> increases the sensitivity of epsteinâ€barr virus immortalized<br>lymphoblastoid cells to nonâ€MHCâ€restricted cytotoxicity. International Journal of Cancer, 1993, 53,<br>1008-1012.                                                                                        | 5.1  | 4         |
| 135 | Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the<br>Epstein-Barr virus-encoded nuclear antigen 4. Journal of Virology, 1993, 67, 1572-1578.                                                                                                                    | 3.4  | 164       |
| 136 | Immune escape by Epstein-Barr virus (EBV) carrying Burkitt's lymphoma: in vitro reconstitution of sensitivity to EBV-specific cytotoxic T cells. International Immunology, 1992, 4, 1283-1292.                                                                                                                 | 4.0  | 26        |
| 137 | Recognition of the Epstein-Barr virus-encoded nuclear antigens EBNA-4 and EBNA-6 by<br>HLA-A11-restricted cytotoxic T lymphocytes: implications for down-regulation of HLA-A11 in Burkitt<br>lymphoma Proceedings of the National Academy of Sciences of the United States of America, 1992, 89,<br>5862-5866. | 7.1  | 106       |
| 138 | Expression of the epstein-barr virus (EBV)-encoded membrane protein LMP1 impairs theln vitro growth,<br>clonability and tumorigenicity of an EBV-negative burkitt lymphoma line. International Journal of<br>Cancer, 1992, 51, 949-955.                                                                        | 5.1  | 28        |
| 139 | Suppression of basal, PMA-and IFN-α-, but not IFN-γ-induced expression of HLA class I in v-myc-transformed<br>U-937 monoblasts. International Journal of Cancer, 1992, 52, 759-765.                                                                                                                            | 5.1  | 2         |
| 140 | Methylation of discrete sites within the enhancer region regulates the activity of the Epstein-Barr<br>virus BamHI W promoter in Burkitt lymphoma lines. Journal of Virology, 1992, 66, 62-69.                                                                                                                 | 3.4  | 63        |
| 141 | Stimulation with allogeneic epstein-barr virus-transformed lymphoblastoid cell lines generates HLA<br>class I-specific CTLs with different target cell avidity. Cellular Immunology, 1991, 137, 501-513.                                                                                                       | 3.0  | 4         |
| 142 | aberrant expression of HLA Class-I antigens in burkitt lymphoma cells. International Journal of<br>Cancer, 1991, 47, 544-550.                                                                                                                                                                                  | 5.1  | 56        |
| 143 | The epstein-barr-virus-encoded membrane protein LMP but not the nuclear antigen EBNA-1 induces rejection of transfected murine mammary carcinoma cells. International Journal of Cancer, 1991, 48, 794-800.                                                                                                    | 5.1  | 42        |
| 144 | Search for the critical characteristics of phenotypically different B cell lines, Burkitt lymphoma cells<br>and lymphoblastoid cell lines, which determine differences in their functional interaction with<br>allogeneic lymphocytes. Cancer Immunology, Immunotherapy, 1991, 34, 128-132.                    | 4.2  | 14        |

| #   | Article                                                                                                                                                                                                                                                       | lF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Generation of T cell clones binding F(ab′)2 fragments of the idiotypic immunoglobulin in patients with<br>monoclonal gammopathy. Cancer Immunology, Immunotherapy, 1991, 34, 157-162.                                                                         | 4.2 | 27        |
| 146 | Expression of the Epstein-Barr virus (EBV)-encoded membrane antigen (LMP) increases the stimulatory<br>capacity of EBV-negative B lymphoma lines in allogeneic mixed lymphocyte cultures. European Journal<br>of Immunology, 1990, 20, 2293-2299.             | 2.9 | 41        |
| 147 | Up regulation of the Epstein-Barr virus (EBV)-encoded membrane protein LMP in the Burkitt's<br>lymphoma line Daudi after exposure to n-butyrate and after EBV superinfection. Journal of Virology,<br>1990, 64, 5441-5447.                                    | 3.4 | 35        |
| 148 | Epstein-Barr virus (EBV) antigens processed and presented by B cells, B blasts, and macrophages<br>trigger T-cell-mediated inhibition of EBV-induced B-cell transformation. Journal of Virology, 1990, 64,<br>1398-1401.                                      | 3.4 | 31        |
| 149 | Reversion of tumorigenicity and decreased agarose clonability after EBV conversion of an igh/myc translocation-carrying be line. International Journal of Cancer, 1989, 43, 273-278.                                                                          | 5.1 | 30        |
| 150 | Relationship between clinical stage, histopathology and antibody titers against the second<br>epstein-barr virus nuclear antigen (EBNA-2) in non-Hodgkin's lymphoma patients. International Journal<br>of Cancer, 1989, 43, 1017-1021.                        | 5.1 | 5         |
| 151 | 5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through<br>EBNA-6 and latent membrane protein in the Burkitt's lymphoma line rael. Journal of Virology, 1989, 63,<br>3135-3141.                                    | 3.4 | 153       |
| 152 | Differential expression of hla antigen of HLA anigens on human Bâ€cell lines of normal and malignant<br>origin: A consequence of immune surveillance or a phenotypic vestige of the progenitor cells?.<br>International Journal of Cancer, 1988, 41, 913-919. | 5.1 | 34        |
| 153 | T-cell-mediated inhibition of EBV-induced B-cell transformation: Recognition of virus particles.<br>International Journal of Cancer, 1988, 42, 359-364.                                                                                                       | 5.1 | 16        |
| 154 | Expression of the Epstein-Barr virus encoded EBNA-I gene in stably transfected human and murine cell<br>lines. International Journal of Cancer, 1988, 42, 592-598.                                                                                            | 5.1 | 3         |
| 155 | Combined treatment with interferon (IFN)-Î <sup>3</sup> and tumor necrosis factor (TNF)-α up-regulates the expression of HLA class I determinants in Burkitt lymphoma lines. Cellular Immunology, 1988, 117, 303-311.                                         | 3.0 | 15        |
| 156 | Down-regulation of class I HLA antigens and of the Epstein-Barr virus-encoded latent membrane<br>protein in Burkitt lymphoma lines Proceedings of the National Academy of Sciences of the United<br>States of America, 1987, 84, 4567-4571.                   | 7.1 | 133       |
| 157 | Analysis of Epstein-Barr virus-specific and non-specific immune functions in a patient during the development of a non-Hodgkin's lymphoma. European Journal of Cancer & Clinical Oncology, 1987, 23, 379-386.                                                 | 0.7 | 4         |
| 158 | Characterization of ebv-carrying b-cell populations in healthy seropositive individuals with regard to density, release of transforming virus and spontaneous outgrowth. International Journal of Cancer, 1987, 39, 472-476.                                  | 5.1 | 100       |
| 159 | Defective cell-mediated response to EBV-transformed B cells in a healthy individual with regular EBV antibody titers. International Journal of Cancer, 1987, 40, 149-156.                                                                                     | 5.1 | 5         |
| 160 | Down-regulation of the EBV-encoded membrane protein (LMP) in burkitt lymphomas. International<br>Journal of Cancer, 1987, 40, 358-364.                                                                                                                        | 5.1 | 35        |
| 161 | Paired Epstein-Barr virus (EBV)-negative and EBV-converted Burkitt lymphoma lines: Stimulatory capacity in allogeneic mixed lymphocyte cultures. International Journal of Cancer, 1987, 40, 691-697.                                                          | 5.1 | 45        |
| 162 | Activation of B lymphocytes by Epstein-Barr virus/CR2 receptor interaction. European Journal of<br>Immunology, 1987, 17, 815-820.                                                                                                                             | 2.9 | 34        |

| #   | Article                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Differentiation-dependent sensitivity of human B-cell-derived lines to major histocompatibility<br>complex-restricted T-cell cytotoxicity Proceedings of the National Academy of Sciences of the United<br>States of America, 1986, 83, 5620-5624.                                                                     | 7.1 | 97        |
| 164 | B cell activation by the nontransforming P3HR-1 substrain of the Epstein-Barr virus (EBV). European<br>Journal of Immunology, 1986, 16, 841-845.                                                                                                                                                                       | 2.9 | 17        |
| 165 | Cytotoxic factor produced by human blood lymphocytes of low density upon exposure to autologous<br>B cells. Immunology Letters, 1986, 12, 141-146.                                                                                                                                                                     | 2.5 | 1         |
| 166 | Differential effect of cyclosporin-A on the mixed-lymphocyte culture-induced proliferative and cytotoxic responses of T lymphocytes with different cell densities. Cellular Immunology, 1986, 103, 409-416.                                                                                                            | 3.0 | 3         |
| 167 | Differential recognition of tumor-derived and in vitro Epstein-Barr virus-transformed B-cell lines by<br>fetal calf serum-specific T4-positive cytotoxic T-lymphocyte clones. Cellular Immunology, 1986, 98,<br>453-466.                                                                                               | 3.0 | 16        |
| 168 | Modulation of human blood lymphocyte cytotoxicity by the phorbol ester tumor promoter P(Bu)2:<br>Increase of target binding, impairment of effector recycling, and activation of lytic potential which is<br>independent of IL-2. Cellular Immunology, 1985, 91, 178-192.                                              | 3.0 | 8         |
| 169 | Selective inhibitory effect of Hu-IFN-Î <sup>3</sup> on the agarose clonability of tumor-derived lymphoid cell lines.<br>Cellular Immunology, 1985, 90, 65-73.                                                                                                                                                         | 3.0 | 4         |
| 170 | Leukocyte migration inhibitory factor production by activated lymphocytes representing<br>immunological memory or virus-receptor interaction: Response of T cell subsets to Epstein-Barr virus<br>nuclear antigen, response of B cells to UV in activated Epstein-Barr virus. Immunology Letters, 1985, 9,<br>267-273. | 2.5 | 3         |
| 171 | Effect of cyclosporin-A (CsA) on the ability of T lymphocyte subsets to inhibit the proliferation of autologous EBV-transformed B cells. International Journal of Cancer, 1985, 35, 327-333.                                                                                                                           | 5.1 | 16        |
| 172 | Production of leukocyte migration inhibitory factor (LIF) in human lymphocyte subsets exposed to polyclonal activators. Cellular Immunology, 1984, 85, 511-518.                                                                                                                                                        | 3.0 | 11        |
| 173 | Natural killer cell sensitivity of human lymphoid lines of B-cell origin does not correlate with<br>tumorigenicity or with the expression of certain differentiation markers. Cellular Immunology, 1984,<br>86, 278-286.                                                                                               | 3.0 | 12        |
| 174 | Lysis of tumor biopsy cells by blood lymphocyte subsets of various densities. Autologous and allogeneic studies. International Journal of Cancer, 1984, 33, 185-192.                                                                                                                                                   | 5.1 | 21        |
| 175 | Virologic, immunologic, and clinical observations on a patient during the incubation, acute, and convalescent phases of infectious mononucleosis. Clinical Immunology and Immunopathology, 1984, 30, 437-450.                                                                                                          | 2.0 | 80        |
| 176 | Large granular lymphocytes inhibit the in vitro growth of autologous Epstein-Barr virus-infected B<br>cells. Cellular Immunology, 1983, 76, 311-321.                                                                                                                                                                   | 3.0 | 100       |
| 177 | The Tumor Promoter Phorbol-12,13-Dibutyrate [P(BU)2] Stimulates Cytotoxic Activity of Human Blood<br>Lymphocytes. Immunobiology, 1983, 165, 403-414.                                                                                                                                                                   | 1.9 | 13        |
| 178 | Comparison of highly NK active human lymphocyte subsets separated by various procedures involving<br>E, EA rosetting, density gradients and adherence to immune complexes. Journal of Immunological<br>Methods, 1983, 63, 57-67.                                                                                       | 1.4 | 11        |
| 179 | Lysis of tumor biopsy cells by autologous T lymphocytes activated in mixed cultures and propagated with T cell growth factor Journal of Experimental Medicine, 1982, 155, 83-95.                                                                                                                                       | 8.5 | 80        |
| 180 | Natural killer activity of human blood lymphocytes. Molecular Immunology, 1982, 19, 1323-1329.                                                                                                                                                                                                                         | 2.2 | 13        |

| #   | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Human T Cell Growth Factor (TCGF) produced by repeated stimulation of non-adherent human<br>lymphocytes. Journal of Immunological Methods, 1982, 51, 35-44.                                                                                                              | 1.4  | 10        |
| 182 | Effect of different Epstein-Barr virus-determined antigens (EBNA, EA, and VCA) on the leukocyte<br>migration of healthy donors and patients with infectious mononucleosis and certain<br>immunodeficiencies. Clinical Immunology and Immunopathology, 1982, 22, 128-138. | 2.0  | 31        |
| 183 | Activation of human blood lymphocyte subsets for cytotoxic potential. Cellular Immunology, 1982, 69, 21-33.                                                                                                                                                              | 3.0  | 14        |
| 184 | Human blood lymphocyte subsets separated on the basis of nylon adherence, SRBC and EA rosetting:<br>Natural cytotoxicity and characterization with monoclonal reagents. Cellular Immunology, 1982, 69,<br>166-174.                                                       | 3.0  | 13        |
| 185 | Use of cryopreserved lymphocytes for the indirect leukocyte migration inhibition assay. Journal of<br>Immunological Methods, 1981, 46, 369-374.                                                                                                                          | 1.4  | 11        |
| 186 | Target selectivity of interferon-induced human killer lymphocytes related to their Fc receptor<br>expression Proceedings of the National Academy of Sciences of the United States of America, 1980, 77,<br>3620-3624.                                                    | 7.1  | 36        |
| 187 | Interferon suppresses antigen- and mitogen-induced leukocyte migration inhibition. Nature, 1980, 288, 594-596.                                                                                                                                                           | 27.8 | 24        |
| 188 | Effect of interferon-alpha 1 from E. coli on some cell functions. Science, 1980, 209, 1431-1435.                                                                                                                                                                         | 12.6 | 89        |