
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5048452/publications.pdf Version: 2024-02-01

HONCUE DAL

#	Article	IF	CITATIONS
1	A green extraction method for gelatin and its molecular mechanism. Food Hydrocolloids, 2022, 124, 107344.	10.7	16
2	Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. Food Science and Human Wellness, 2022, 11, 218-229.	4.9	46
3	Effect of different dehydration methods on the properties of gelatin films. Food Chemistry, 2022, 374, 131814.	8.2	15
4	Construction of dual-compartmental micro-droplet via shrimp ferritin nanocages stabilized Pickering emulsions for co-encapsulation of hydrophobic/hydrophilic bioactive compounds. Food Hydrocolloids, 2022, 126, 107443.	10.7	19
5	Regulation mechanism of myofibrillar protein emulsification mode by adding psyllium (Plantago) Tj ETQq1 1 0.784	1314 rgBT 8.2	O_{13} verlock
6	Advances in Rational Protein Engineering toward Functional Architectures and Their Applications in Food Science. Journal of Agricultural and Food Chemistry, 2022, 70, 4522-4533.	5.2	6
7	Exploration of Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides from Silkworm Pupae (<i>Bombyx) Tj ETQq1 1 and Food Chemistry, 2022, 70, 3862-3871.</i>	0.784314 5.2	rgBT /Over 26
8	Dominating roles of protein conformation and water migration in fish muscle quality: The effect of freshness and heating process. Food Chemistry, 2022, 388, 132881.	8.2	17
9	Compartmentalized chitooligosaccharide/ferritin particles for controlled co-encapsulation of curcumin and rutin. Carbohydrate Polymers, 2022, 290, 119484.	10.2	10
10	Gelatin microgel-stabilized high internal phase emulsion for easy industrialization: Preparation, interfacial behavior and physical stability. Innovative Food Science and Emerging Technologies, 2022, 78, 103011.	5.6	24
11	Improved properties of gelatin films involving transglutaminase cross-linking and ethanol dehydration: The self-assembly role of chitosan and montmorillonite. Food Hydrocolloids, 2022, 132, 107870.	10.7	15
12	The construction of self-protective ferritin nanocage to cross dynamic gastrointestinal barriers with improved delivery efficiency. Food Chemistry, 2022, 397, 133680.	8.2	4
13	Regulation mechanism of nanocellulose with different morphologies on the properties of low-oil gelatin emulsions: Interfacial adsorption or network formation?. Food Hydrocolloids, 2022, 133, 107960.	10.7	23
14	Facile isolation of cellulose nanofibrils from agro-processing residues and its improved stabilization effect on gelatin emulsion. International Journal of Biological Macromolecules, 2022, 216, 272-281.	7.5	10
15	Transglutaminase modified type A gelatin gel: The influence of intra-molecular and inter-molecular cross-linking on structure-properties. Food Chemistry, 2022, 395, 133578.	8.2	15
16	Adjusting the interfacial property and emulsifying property of cellulose nanofibrils by ultrasonic treatment combined with gelatin addition. Food Hydrocolloids, 2022, 133, 107905.	10.7	28
17	Effect and mechanism of psyllium husk (Plantago ovata) on myofibrillar protein gelation. LWT - Food Science and Technology, 2021, 138, 110651.	5.2	28
18	Preparation of high thermal stability gelatin emulsion and its application in 3D printing. Food Hydrocolloids, 2021, 113, 106536.	10.7	111

#	Article	IF	CITATIONS
19	Preparation and characterization of gelatin films by transglutaminase cross-linking combined with ethanol precipitation or Hofmeister effect. Food Hydrocolloids, 2021, 113, 106421.	10.7	34
20	Encapsulation of Î ² -carotene by self-assembly of rapeseed meal-derived peptides: Factor optimization and structural characterization. LWT - Food Science and Technology, 2021, 138, 110456.	5.2	13
21	Improved solubility and interface properties of pigskin gelatin by microwave irradiation. International Journal of Biological Macromolecules, 2021, 171, 1-9.	7.5	16
22	The improvement of gel and physicochemical properties of porcine myosin under low salt concentrations by pulsed ultrasound treatment and its mechanism. Food Research International, 2021, 141, 110056.	6.2	29
23	Effect of phospholipids on the physicochemical properties of myofibrillar proteins solution mediated by NaCl concentration. LWT - Food Science and Technology, 2021, 141, 110895.	5.2	24
24	Construction of hydrogels based on the homogeneous carboxymethylated chitin from Hericium erinaceus residue: Role of carboxymethylation degree. Carbohydrate Polymers, 2021, 262, 117953.	10.2	17
25	Effect of drying methods on the solubility and amphiphilicity of room temperature soluble gelatin extracted by microwave-rapid freezing-thawing coupling. Food Chemistry, 2021, 351, 129226.	8.2	19
26	Comparison of cellulose nanocrystals from pineapple residues and its preliminary application for Pickering emulsions. Nanotechnology, 2021, 32, 495708.	2.6	6
27	Effect of freezing temperature on molecular structure and functional properties of gelatin extracted by microwave-freezing-thawing coupling method. LWT - Food Science and Technology, 2021, 149, 111894.	5.2	5
28	Effect of microwave extraction temperature on the chemical structure and oil-water interface properties of fish skin gelatin. Innovative Food Science and Emerging Technologies, 2021, 74, 102835.	5.6	16
29	Fabrication and characterization of myofibrillar microgel particles as novel Pickering stabilizers: Effect of particle size and wettability on emulsifying capacity. LWT - Food Science and Technology, 2021, 151, 112002.	5.2	26
30	Co-stabilization and properties regulation of Pickering emulsions by cellulose nanocrystals and nanofibrils from lemon seeds. Food Hydrocolloids, 2021, 120, 106884.	10.7	45
31	Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose: Characterization and application for methylene blue adsorption. International Journal of Biological Macromolecules, 2021, 191, 129-138.	7.5	34
32	The development of natural and designed protein nanocages for encapsulation and delivery of active compounds. Food Hydrocolloids, 2021, 121, 107004.	10.7	29
33	Lignocellulose nanocrystals from pineapple peel: Preparation, characterization and application as efficient Pickering emulsion stabilizers. Food Research International, 2021, 150, 110738.	6.2	26
34	Enhanced Interface Properties and Stability of Lignocellulose Nanocrystals Stabilized Pickering Emulsions: The Leading Role of Tannic Acid. Journal of Agricultural and Food Chemistry, 2021, 69, 14650-14661.	5.2	22
35	Degradation of structural proteins and their relationship with the quality of Mandarin fish (<i>Siniperca chuatsi</i>) during postâ€mortem storage and cooking. International Journal of Food Science and Technology, 2020, 55, 1617-1628.	2.7	9
36	Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption. Carbohydrate Polymers, 2020, 230, 115599.	10.2	70

#	Article	IF	CITATIONS
37	Effect of interaction between sorbitol and gelatin on gelatin properties and its mechanism under different citric acid concentrations. Food Hydrocolloids, 2020, 101, 105557.	10.7	60
38	Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: influence of the nanoparticles concentration. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111294.	5.0	83
39	Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends in Food Science and Technology, 2020, 102, 16-29.	15.1	178
40	The mechanism of improved myosin gel properties by low dose rosmarinic acid addition during gel formation. Food Hydrocolloids, 2020, 106, 105869.	10.7	52
41	A simple mesoporous silica nanoparticle-based fluorescence aptasensor for the detection of zearalenone in grain and cereal products. Analytical and Bioanalytical Chemistry, 2020, 412, 5627-5635.	3.7	32
42	Fabrication of cross-linked β-lactoglobulin nanoparticles as effective stabilizers for Pickering high internal phase emulsions. Food Hydrocolloids, 2020, 109, 106151.	10.7	49
43	Solidâ€phase extraction materials based on molecularly imprinted polymers for recognition of pyrethroids. Journal of Applied Polymer Science, 2020, 137, 48919.	2.6	2
44	Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydrate Polymers, 2020, 238, 116180.	10.2	134
45	Food-Grade Gelatin Nanoparticles: Preparation, Characterization, and Preliminary Application for Stabilizing Pickering Emulsions. Foods, 2019, 8, 479.	4.3	42
46	Oxidative DNA damage and multi-organ pathologies in male mice subchronically treated with aflatoxin B1. Ecotoxicology and Environmental Safety, 2019, 186, 109697.	6.0	13
47	Structure of Hyla rabbit skin gelatin as affected by microwave-assisted extraction. International Journal of Food Properties, 2019, 22, 1594-1607.	3.0	25
48	Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption. Cellulose, 2019, 26, 3825-3844.	4.9	69
49	A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1. Analytica Chimica Acta, 2019, 1068, 87-95.	5.4	61
50	Fluorescence Spectroscopic Investigation of Competitive Interactions between Quercetin and Aflatoxin B1 for Binding to Human Serum Albumin. Toxins, 2019, 11, 214.	3.4	24
51	Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic) Tj ETQq1 1 0.784314 rgBT /O	verlock 10	Tf 50 182 Td
52	Physico-mechanical and antioxidant properties of gelatin film from rabbit skin incorporated with rosemary acid. Food Packaging and Shelf Life, 2019, 19, 121-130.	7.5	48
53	Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release. Carbohydrate Polymers, 2019, 209, 51-61.	10.2	98
54	Utilization of pineapple peel for production of nanocellulose and film application. Cellulose, 2018, 25, 1743-1756.	4.9	151

#	Article	IF	CITATIONS
55	Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate Polymers, 2018, 185, 1-11.	10.2	382
56	Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose, 2018, 25, 593-606.	4.9	61
57	Enhanced performances of polyvinyl alcohol films by introducing tannic acid and pineapple peel-derived cellulose nanocrystals. Cellulose, 2018, 25, 4623-4637.	4.9	48
58	Enhanced Swelling and Responsive Properties of Pineapple Peel Carboxymethyl Cellulose- <i>g</i> -poly(acrylic acid- <i>co</i> -acrylamide) Superabsorbent Hydrogel by the Introduction of Carclazyte. Journal of Agricultural and Food Chemistry, 2017, 65, 565-574.	5.2	138
59	Preparation and characterization of papain embedded in magnetic cellulose hydrogels prepared from tea residue. Journal of Molecular Liquids, 2017, 232, 449-456.	4.9	27
60	Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydrate Polymers, 2017, 169, 504-514.	10.2	93
61	Enhanced properties of tea residue cellulose hydrogels by addition of graphene oxide. Journal of Molecular Liquids, 2017, 244, 110-116.	4.9	31
62	Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose, 2017, 24, 69-84.	4.9	55
63	Extraction Optimization, Preliminary Characterization and Antioxidant Activity of Glycoproteins from the Muscle of <i>Sepia pharaonis</i> . Food Science and Technology Research, 2016, 22, 39-52.	0.6	10
64	Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydrate Polymers, 2016, 148, 1-10.	10.2	95