
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5048044/publications.pdf Version: 2024-02-01

ALEXANDER P SCOTT

#	Article	IF	CITATIONS
1	Bile Acid Secreted by Male Sea Lamprey That Acts as a Sex Pheromone. Science, 2002, 296, 138-141.	6.0	333
2	Measurement of fish steroids in water—a review. General and Comparative Endocrinology, 2007, 153, 392-400.	0.8	205
3	Several Synthetic Progestins with Different Potencies Adversely Affect Reproduction of Fish. Environmental Science & Technology, 2013, 47, 2077-2084.	4.6	152
4	Principles of Sound Ecotoxicology. Environmental Science & amp; Technology, 2014, 48, 3100-3111.	4.6	133
5	Reproductive responses in fathead minnow and Japanese medaka following exposure to a synthetic progestin, Norethindrone. Aquatic Toxicology, 2010, 99, 256-262.	1.9	129
6	Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids. Steroids, 2012, 77, 1450-1468.	0.8	127
7	Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects. Steroids, 2013, 78, 268-281.	0.8	121
8	Excretion of Free and Conjugated Steroids in Rainbow Trout (Oncorhynchus mykiss): Evidence for Branchial Excretion of the Maturation-Inducing Steroid, 17,20β-Dihydroxy-4-pregnen-3-one. General and Comparative Endocrinology, 1996, 101, 180-194.	0.8	111
9	Use of the Three-Spined Stickleback (Gasterosteus aculeatus) As a Sensitive in Vivo Test for Detection of Environmental Antiandrogens. Environmental Health Perspectives, 2006, 114, 115-121.	2.8	87
10	Non-invasive measurement of 11-ketotestosterone, cortisol and androstenedione in male three-spined stickleback (Gasterosteus aculeatus). General and Comparative Endocrinology, 2007, 152, 30-38.	0.8	84
11	Effects of a pyrethroid pesticide on endocrine responses to female odours and reproductive behaviour in male parr of brown trout (Salmo trutta L.). Aquatic Toxicology, 2007, 81, 1-9.	1.9	81
12	Sex steroids and their receptors in lampreys. Steroids, 2008, 73, 1-12.	0.8	81
13	Plasma Gonadotropin II, Sex Steroids, and Thyroid Hormones in Wild Striped Bass (Morone saxatilis) during Spermiation and Final Oocyte Maturation. General and Comparative Endocrinology, 1997, 108, 223-236.	0.8	69
14	Male Sea Lampreys, Petromyzon marinus L., Excrete a Sex Pheromone from Gill Epithelia1. Biology of Reproduction, 2003, 69, 125-132.	1.2	69
15	From single chemicals to mixtures—Reproductive effects of levonorgestrel and ethinylestradiol on the fathead minnow. Aquatic Toxicology, 2015, 169, 152-167.	1.9	69
16	Effect of algal diet and temperature on the biochemical composition of the rotifer, Brachionus plicatilis. Aquaculture, 1978, 14, 247-260.	1.7	68
17	Steroid Profiles in Cultured Female JundiÃ _i , the Siluridae Rhamdia quelen (Quoy and Gaimard, Pisces) Tj ETQq1 3 325-332.	0.78431 0.8	4 rgBT /Over 65
18	Fertility and motility of sperm from Atlantic halibut (Hippoglossus hippoglossus) in relation to dose and timing of gonadotrophin-releasing hormone agonist implant. Aquaculture, 2004, 230, 547-567.	1.7	62

#	Article	IF	CITATIONS
19	Detection of the anti-androgenic effect of endocrine disrupting environmental contaminants using in vivo and in vitro assays in the three-spined stickleback. Aquatic Toxicology, 2009, 92, 228-239.	1.9	59
20	Changes in Plasma Gonadotropin II and Sex Steroid Hormones, and Sperm Production of Striped Bass after Treatment with Controlled-Release Gonadotropin-Releasing Hormone Agonist-Delivery Systems1. Biology of Reproduction, 1997, 57, 669-675.	1.2	58
21	Gonadotrophin-Releasing Hormone Agonist Stimulates Milt Fluidity and Plasma Concentrations of 17,20β-Dihydroxylated and 5β-Reduced, 3α-Hydroxylated C21Steroids in Male Plaice (Pleuronectes platessa). General and Comparative Endocrinology, 1998, 112, 163-177.	0.8	58
22	Vitellogenin in the blood plasma of male cod (Gadus morhua): A sign of oestrogenic endocrine disruption in the open sea?. Marine Environmental Research, 2006, 61, 149-170.	1.1	53
23	Sexually mature European eels (Anguilla anguilla L.) stimulate gonadal development of neighbouring males: Possible involvement of chemical communication. General and Comparative Endocrinology, 2006, 147, 304-313.	0.8	52
24	Is there any value in measuring vertebrate steroids in invertebrates?. General and Comparative Endocrinology, 2018, 265, 77-82.	0.8	46
25	Pheromones of the male sea lamprey, Petromyzon marinus L.: structural studies on a new compound, 3-keto allocholic acid, and 3-keto petromyzonol sulfate. Steroids, 2003, 68, 297-304.	0.8	43
26	The organophosphorous pesticide, fenitrothion, acts as an anti-androgen and alters reproductive behavior of the male three-spined stickleback, Gasterosteus aculeatus. Ecotoxicology, 2009, 18, 122-133.	1.1	41
27	In vitro biosynthesis of novel 5β-reduced steroids by the testis of the round goby, Neogobius melanostomus. General and Comparative Endocrinology, 2005, 140, 1-13.	0.8	40
28	Treatment of GnRHa-implanted Senegalese sole (Solea senegalensis) with 11-ketoandrostenedione stimulates spermatogenesis and increases sperm motility. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 147, 885-892.	0.8	40
29	Relationship between Sex Steroid and Vitellogenin Concentrations in Flounder (Platichthys flesus) Sampled from an Estuary Contaminated with Estrogenic Endocrine-Disrupting Compounds. Environmental Health Perspectives, 2006, 114, 27-31.	2.8	39
30	Evidence for estrogenic endocrine disruption in an offshore flatfish, the dab (Limanda limanda L.). Marine Environmental Research, 2007, 64, 128-148.	1.1	39
31	Kinetics of vitellogenin protein and mRNA induction and depuration in fish following laboratory and environmental exposure to oestrogens. Marine Environmental Research, 2004, 58, 419-423.	1.1	38
32	SURVEY OF ESTROGENIC ACTIVITY IN UNITED KINGDOM ESTUARINE AND COASTAL WATERS AND ITS EFFECTS ON GONADAL DEVELOPMENT OF THE FLOUNDER PLATICHTHYS FLESUS. Environmental Toxicology and Chemistry, 1999, 18, 1791.	2.2	36
33	ACTH Production by the pars intermedia of the rainbow trout pituitary. General and Comparative Endocrinology, 1975, 27, 193-202.	0.8	33
34	Plasma Steroids in Mature Common Dentex (Dentex dentex) Stimulated with a Gonadotropin-Releasing Hormone Agonist. General and Comparative Endocrinology, 2001, 123, 1-12.	0.8	32
35	Acute viral and bacterial infections elevate water cortisol concentrations in fish tanks. Aquaculture, 2007, 272, 707-716.	1.7	31
36	15α-Hydroxyprogesterone in male sea lampreys, Petromyzon marinus L Steroids, 2004, 69, 473-481.	0.8	30

#	Article	IF	CITATIONS
37	Mussels (Mytilus spp.) display an ability for rapid and high capacity uptake of the vertebrate steroid, estradiol-171² from water. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 407-420.	1.2	29
38	Abnormally elevated VTG concentrations in flounder (Platichthys flesus) from the Mersey Estuary (UK)—a continuing problem. Ecotoxicology and Environmental Safety, 2004, 58, 356-364.	2.9	26
39	The Sea Lamprey (Petromyzon marinus) Has a Receptor for Androstenedione1. Biology of Reproduction, 2007, 77, 688-696.	1.2	26
40	Rapid uptake, biotransformation, esterification and lack of depuration of testosterone and its metabolites by the common mussel, Mytilus spp Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 54-65.	1.2	24
41	Release of Free and Conjugated Forms of the Putative Pheromonal Steroid 11-Oxo-etiocholanolone by Reproductively Mature Male Round Goby (Neogobius melanostomus Pallas, 1814). Biology of Reproduction, 2011, 84, 288-298.	1.2	23
42	Piscine Follicle-Stimulating Hormone Triggers Progestin Production in Gilthead Seabream Primary Ovarian Follicles1. Biology of Reproduction, 2012, 87, 111.	1.2	23
43	15α-Hydroxytestosterone produced in vitro and in vivo in the sea lamprey, Petromyzon marinus. General and Comparative Endocrinology, 2003, 132, 418-426.	0.8	22
44	A male pheromone in the sea lamprey (Petromyzon marinus): an overview. Fish Physiology and Biochemistry, 2003, 28, 259-262.	0.9	21
45	HPLC and ELISA analyses of larval bile acids from Pacific and western brook lampreys. Steroids, 2003, 68, 515-523.	0.8	21
46	15α-Hydroxytestosterone induction by GnRH I and GnRH III in Atlantic and Great Lakes sea lamprey (Petromyzon marinus L.). General and Comparative Endocrinology, 2004, 136, 276-281.	0.8	21
47	Dose–response relationship of 15α-hydroxylated sex steroids to gonadotropin-releasing hormones and pituitary extract in male sea lampreys (Petromyzon marinus). General and Comparative Endocrinology, 2007, 151, 108-115.	0.8	20
48	INTERCALIBRATION EXERCISE USING A STICKLEBACK ENDOCRINE DISRUPTER SCREENING ASSAY. Environmental Toxicology and Chemistry, 2008, 27, 404.	2.2	20
49	Field surveys reveal the presence of anti-androgens in an effluent-receiving river using stickleback-specific biomarkers. Aquatic Toxicology, 2012, 122-123, 75-85.	1.9	20
50	Development and application of an ELISA for a sex pheromone released by the male sea lamprey (Petromyzon marinus L.). General and Comparative Endocrinology, 2002, 129, 163-170.	0.8	19
51	The seminal vesicle synthesizes steroids in the round goby Neogobius melanostomus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, 117-123.	0.8	18
52	Identification of cortisol metabolites in the bile of Atlantic cod Gadus morhua L Steroids, 2014, 88, 26-35.	0.8	15
53	Uptake and metabolism of water-borne progesterone by the mussel, Mytilus spp. (Mollusca). Journal of Steroid Biochemistry and Molecular Biology, 2018, 178, 13-21.	1.2	15
54	Extragonadal Production of 17,20-Dihydroxy-4-pregnen-3-onesin Vitroin Cyprinid Fish. General and Comparative Endocrinology, 1996, 104, 296-303.	0.8	13

#	Article	IF	CITATIONS
55	Evidence of a Male Sex Pheromone in the Round Goby (Neogobius melanostomus). Biological Invasions, 2006, 8, 105-112.	1.2	13
56	The role of sex ratio on spawning performance and on the free and conjugated sex steroids released into the water by common dentex (Dentex dentex) broodstock. General and Comparative Endocrinology, 2004, 138, 255-262.	0.8	12
57	Evidence for the release of sex pheromones by male round gobies (Neogobius melanstomus). Fish Physiology and Biochemistry, 2003, 28, 237-239.	0.9	11
58	The Effect of Elevated Steroids Released by Reproductive Male Round Gobies, Neogobius melanostomus, on Olfactory Responses in Females. Journal of Chemical Ecology, 2011, 37, 260-262.	0.9	10
59	Evidence that progestins play an important role in spermiation and pheromone production in male sea lamprey (Petromyzon marinus). General and Comparative Endocrinology, 2015, 212, 17-27.	0.8	9
60	Invasive male round gobies (<i>Neogobius melanostomus</i>) release pheromones in their urine to attract females. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 393-400.	0.7	8
61	Teleost maturation-inducing hormone, 17,20β-dihydroxypregn-4-en-3-one, peaks after spawning in Tinca tinca. General and Comparative Endocrinology, 2011, 172, 234-242.	0.8	6
62	Comments on Niemuth, N.J. and Klaper, R.D. 2015. Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere 135, 38–45. Chemosphere, 2016, 165, 566-569.	4.2	6
63	Molecular cloning of two types of spiggin cDNA in the three-spined stickleback, Gasterosteus aculeatus. Fish Physiology and Biochemistry, 2003, 28, 425.	0.9	5
64	The Uptake of Ethinyl-Estradiol and Cortisol From Water by Mussels (Mytilus spp.). Frontiers in Endocrinology, 2021, 12, 794623.	1.5	5
65	Data on the uptake and metabolism of the vertebrate steroid estradiol-17β from water by the common mussel, Mytilus spp Data in Brief, 2016, 9, 956-965.	0.5	4
66	Fish Vitellogenin as a Biological Effect Marker of Oestrogenic Endocrine Disruption in the Open Sea. , 0, , 472-490.		1
67	Purification of Multiple Precursors for Egg Chorion Proteins in Atlantic Cod (Gadus morhua). Zoological Science, 2009, 26, 870-877.	0.3	1