Mary J Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5047809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Honeybee Kenyon cells are regulated by a tonic GABA receptor conductance. Journal of Neurophysiology, 2014, 112, 2026-2035.	1.8	12
2	Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature Communications, 2013, 4, 1634.	12.8	215
3	GABAergic Neurons from Mouse Embryonic Stem Cells Possess Functional Properties of Striatal Neurons In Vitro, and Develop into Striatal Neurons In Vivo in a Mouse Model of Huntington's Disease. Stem Cell Reviews and Reports, 2012, 8, 513-531.	5.6	32
4	Pharmacological Analysis of the Activation and Receptor Properties of the Tonic GABACR Current in Retinal Bipolar Cell Terminals. PLoS ONE, 2011, 6, e24892.	2.5	8
5	Characterisation of bipolar cell synaptic transmission in goldfish retina using paired recordings. Journal of Physiology, 2010, 588, 1489-1498.	2.9	13
6	Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology, 2007, 52, 1-11.	4.1	72
7	Modulation of Ca2+-activated K+currents and Ca2+-dependent action potentials by exocytosis in goldfish bipolar cell terminals. Journal of Physiology, 2006, 572, 747-762.	2.9	22
8	Functional segregation of synaptic GABAAand GABACreceptors in goldfish bipolar cell terminals. Journal of Physiology, 2006, 577, 45-53.	2.9	35
9	Multiple, Developmentally Regulated Expression Mechanisms of Long-Term Potentiation at CA1 Synapses. Journal of Neuroscience, 2004, 24, 4903-4911.	3.6	66
10	Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity. BMC Neuroscience, 2004, 5, 44.	1.9	56
11	Activation of mGlu receptors induces LTD without affecting postsynaptic sensitivity of CA1 neurons in rat hippocampal slices. Journal of Physiology, 2003, 546, 455-460.	2.9	46
12	Synaptic Cleft Acidification and Modulation of Short-Term Depression by Exocytosed Protons in Retinal Bipolar Cells. Journal of Neuroscience, 2003, 23, 11332-11341.	3.6	159
13	Synaptic Activation of Presynaptic Glutamate Transporter Currents in Nerve Terminals. Journal of Neuroscience, 2003, 23, 4831-4841.	3.6	98
14	Mathematical modelling of nonâ€stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors. Journal of Physiology, 2001, 537, 407-420.	2.9	37
15	A characterisation of longâ€ŧerm depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. Journal of Physiology, 2001, 537, 421-430.	2.9	158
16	Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction. Neuron, 1999, 24, 389-399.	8.1	298
17	A CaMKII inhibitor, KN-62, facilitates DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology, 1999, 38, 605-608.	4.1	34
18	An investigation of the expression mechanism of LTP of AMPA receptor-mediated synaptic transmission at hippocampal CA1 synapses using failures analysis and dendritic recordings. Neuropharmacology, 1998, 37, 1399-1410.	4.1	29

Mary J Palmer

#	Article	IF	CITATIONS
19	The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology, 1998, 37, 1445-1458.	4.1	145
20	(RS)-2-Chloro-5-Hydroxyphenylglycine (CHPG) Activates mGlu5, but not mGlu1, Receptors Expressed in CHO Cells and Potentiates NMDA Responses in the Hippocampus. Neuropharmacology, 1997, 36, 265-267.	4.1	310
21	The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology, 1997, 36, 1517-1532.	4.1	301
22	NMDA receptor dependence of mGluâ€mediated depression of synaptic transmission in the CA1 region of the rat hippocampus. British Journal of Pharmacology, 1996, 119, 1239-1247.	5.4	25
23	Activation of group I mG1uRs potentiates NMDA responses in rat hippocampal slices. Neuroscience Letters, 1996, 203, 211-213.	2.1	177