Zhihua Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5047654/publications.pdf

Version: 2024-02-01

304368 377514 1,593 90 22 34 citations h-index g-index papers 91 91 91 2017 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design, preparation and application of conjugated microporous polymers. Polymer International, 2014, 63, 381-392.	1.6	97
2	Design, preparation, and application of ordered porous polymer materials. Materials Chemistry and Physics, 2014, 144, 213-225.	2.0	62
3	Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing. Journal of Biomaterials Applications, 2017, 31, 1380-1390.	1.2	62
4	In-situ preparation of silver salts/collagen fiber hybrid composites and their photocatalytic and antibacterial activities. Journal of Hazardous Materials, 2018, 359, 274-280.	6.5	57
5	Synthesis of stable metal-containing porous organic polymers for gas storage. European Polymer Journal, 2017, 91, 242-247.	2.6	52
6	Covalent functionalization of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature. Polymer Chemistry, 2012, 3, 2768.	1.9	50
7	Effect of Chemical Cross-linking on Properties of Gelatin/Hyaluronic Acid Composite Hydrogels. Polymer-Plastics Technology and Engineering, 2013, 52, 45-50.	1.9	50
8	Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. Nanomaterials, 2019, 9, 130.	1.9	50
9	Symmetrical bis-salophen probe serves as a selectively and sensitively fluorescent switch of gallium ions in living cells and zebrafish. Talanta, 2019, 205, 120118.	2.9	45
10	Polymer-based porous microcarriers as cell delivery systems for applications in bone and cartilage tissue engineering. International Materials Reviews, 2021, 66, 77-113.	9.4	45
11	Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol. Journal of Applied Electrochemistry, 2008, 38, 695-701.	1.5	43
12	Fabrication and Physical Properties of Gelatin/Sodium Alginate/Hyaluronic Acid Composite Wound Dressing Hydrogel. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 318-325.	1.2	43
13	Novel ferrocene-based nanoporous organic polymers for clean energy application. RSC Advances, 2015, 5, 8933-8937.	1.7	40
14	In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. International Journal of Nanomedicine, 2019, Volume 14, 149-159.	3.3	33
15	Controlled release in vitro of icariin from gelatin/hyaluronic acid composite microspheres. Polymer Bulletin, 2016, 73, 1055-1066.	1.7	31
16	Preparation and characterization of PVA/SA/HA composite hydrogels for wound dressing. International Journal of Polymer Analysis and Characterization, 2019, 24, 132-141.	0.9	31
17	Fabrication of chitosan/alginate porous sponges as adsorbents for the removal of acid dyes from aqueous solution. Journal of Materials Science, 2019, 54, 9995-10008.	1.7	30
18	Novel nanoporous binary Ag-Ni electrocatalysts for hydrazine oxidation. Rare Metals, 2010, 29, 26-31.	3.6	28

#	Article	IF	Citations
19	Design and synthesis of conjugated polymers of tunable pore size distribution. Materials Chemistry and Physics, 2017, 186, 11-18.	2.0	28
20	In vitro degradation behaviors of Poly-l-lactide/bioactive glass composite materials in phosphate-buffered solution. Polymer Bulletin, 2009, 63, 575-586.	1.7	26
21	Synthesis, characterization, and degradation behaviors of poly(<scp>D,L</scp> -lactide- <i>co</i> -glycolide) modified by maleic anhydride and ethanediamine. International Journal of Polymer Analysis and Characterization, 2017, 22, 575-586.	0.9	26
22	A New Fluorescent Probe Based on Aggregation Induced Emission for Selective and Quantitative Determination of Copper(II) and its Further Application to Cysteine Detection. ChemistrySelect, 2018, 3, 1521-1526.	0.7	24
23	Preparation and Properties of Novel Maleated Poly (D, L-lactide-co-glycolide) Porous Scaffolds for Tissue Engineering. Journal of Macromolecular Science - Physics, 2017, 56, 505-515.	0.4	23
24	Synthesis and characterization of novel maleated poly(d,l-lactide-co-glycolide) by direct melt copolymerization. Polymer Bulletin, 2015, 72, 1531-1543.	1.7	22
25	Effect of Surface Modification of Bioactive Glass on Properties of Poly-L-lactide Composite Materials. Journal of Macromolecular Science - Physics, 2012, 51, 1637-1646.	0.4	21
26	Biological Assessment <i>In-Vivo</i> of Gel-HA Scaffold Materials Containing Nano-Bioactive Glass for Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 572-576.	1.2	21
27	Synthesis and characterization of poly(<scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -glycolide) modified by maleic anhydride and 1,4-butanediamine. International Journal of Polymer Analysis and Characterization, 2018, 23, 474-482.	0.9	20
28	Preparation of gelatin/hyaluronic acid microspheres with different morphologies for drug delivery. Polymer Bulletin, 2015, 72, 713-723.	1.7	19
29	Strontium mineralized silk fibroin porous microcarriers with enhanced osteogenesis as injectable bone tissue engineering vehicles. Materials Science and Engineering C, 2021, 128, 112354.	3.8	19
30	Evaluation of the Potential Cytotoxicity of Metals Associated with Implanted Biomaterials (I). Preparative Biochemistry and Biotechnology, 2008, 39, 81-91.	1.0	18
31	Preparation and Characterization of Hyaluronic Acid Hydrogel Blends with Gelatin. Journal of Macromolecular Science - Physics, 2012, 51, 2392-2400.	0.4	18
32	Influence of Nano-Bioactive Glass (NBG) Content on Properties of Gelatin-Hyaluronic Acid/NBG Composite Scaffolds. Journal of Macromolecular Science - Physics, 2014, 53, 1145-1155.	0.4	18
33	Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage. Materials Chemistry and Physics, 2017, 199, 616-622.	2.0	18
34	Influence of Degradation of Poly-L-lactide on Mass Loss, Mechanical Properties, and Crystallinity in Phosphate-Buffered Solution. Journal of Macromolecular Science - Physics, 2009, 48, 309-317.	0.4	16
35	Morphological and Functional Expression of Fibroblast on Poly(lactide-co-glycolide) \hat{l}^2 -Tricalcium Phosphate/Nature Bone. International Journal of Polymeric Materials and Polymeric Biomaterials, 2012, 61, 643-653.	1.8	16
36	Biological evaluation of poly-l-lactic acid composite containing bioactive glass. Polymer Bulletin, 2010, 65, 411-423.	1.7	15

3

#	Article	IF	Citations
37	Isothermal crystallization and melting behaviors of nano TiO ₂ â€modified polypropylene/polyamide 6 blends. Polymer Composites, 2012, 33, 1054-1063.	2.3	15
38	Preparation and In-vitro Degradation Behavior of Poly(L-lactide-co-glycolide-co-l̂μ-caprolactone) Terpolymer. Journal of Macromolecular Science - Physics, 2019, 58, 568-577.	0.4	15
39	Biological Assessment of Composite Materials Based on Poly-L-lactide and Bovine Bone. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 81-84.	1.8	14
40	Preparation of collagen fiber/CaCO3 hybrid materials and their applications in synthetic paper. Fibers and Polymers, 2014, 15, 519-524.	1.1	14
41	Cytocompatibility of Poly(L-lactide-co-glycolide) Porous Scaffold Materials for Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 57, 1026-1035.	1.8	13
42	Study on Controlled Release of 5-Fluorouracil from Gelatin/Chitosan Microspheres. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 1030-1034.	1.2	13
43	Fabrication and Characterization of Gelatin/Chitosan Microspheres for Drug Release. Journal of Macromolecular Science - Physics, 2012, 51, 777-785.	0.4	13
44	Mechanical and Antibacterial Properties of Polypropylene/Polyamide 6 Blends-TiO2Nanocomposites. Polymer-Plastics Technology and Engineering, 2012, 51, 849-853.	1.9	11
45	Evaluation of Biological Properties In-Vivo of Poly(L-Lactide-Coglycolide) Composites Containing Bioactive Glass. Polymers and Polymer Composites, 2013, 21, 79-84.	1.0	11
46	Preparation and Properties of Polyurethane Hydrogels Based on Methylene Diphenyl Diisocyanate/Polycaprolactone-Polyethylene Glycol. Journal of Macromolecular Science - Physics, 2016, 55, 839-848.	0.4	11
47	Preparation and properties of BMPLGA/NBAG-Î ² -TCP composite scaffold materials. International Journal of Polymer Analysis and Characterization, 2018, 23, 710-720.	0.9	11
48	Preparation and Characterization of Poly(L-lactide-co-glycolide-co-ε-caprolactone) Scaffolds by Thermally Induced Phase Separation. Journal of Macromolecular Science - Physics, 2020, 59, 427-439.	0.4	11
49	Characterization of Biocompatible Scaffolds Based on Gelatin and Hyaluronic Acid for Fibroblasts Culture. Polymers and Polymer Composites, 2012, 20, 791-796.	1.0	10
50	Influence of Mass Ratio of Polyols on Properties of Polycaprolactone-Polyethylene Glycol/Methylene Diphenyl Diisocyanate/Diethylene Glycol Hydrogels. Journal of Macromolecular Science - Physics, 2017, 56, 315-323.	0.4	10
51	A Comparative Study of Preparation of Porous Polyâ€ <scp>L</scp> â€lactide Scaffolds Using NaHCO ₃ and NaCl as Porogen Materials. Journal of Macromolecular Science - Physics, 2008, 47, 667-674.	0.4	9
52	Fabrication and Properties of Composite Biomaterials Composed of Poly(L-Lactide) and Bovine Bone. Designed Monomers and Polymers, 2009, 12, 57-67.	0.7	9
53	Influences of Molecular Weight and Content of Polyethylene Glycol on Morphology and Size of Nano-Bioactive Glass. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 522-527.	1.2	9
54	Polyurethane membrane with temperature- and pH-Controllable permeability for amino-acids. Macromolecular Research, 2015, 23, 94-99.	1.0	9

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Terpolymers of poly(L-lactide-glycolide-Îμ-caprolactone). Journal of Macromolecular Science - Physics, 2018, 57, 562-571.	0.4	9
56	Influence of Thermal Treatment on the Thermal Behavior of Polyâ€∢scp>L⟨/scp>â€lactide. Journal of Macromolecular Science - Physics, 2007, 46, 1247-1254.	0.4	8
57	Preparation of Conductive Polyaniline/Functionalized Titanium Dioxide Nanocomposites via Graft Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 149-153.	1.2	8
58	Covalent Functionalization of Silica Nanoparticle with Poly(glycidyl methacrylate) <i>via</i> ATRP at Ambient Temperature. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 25-28.	1.2	8
59	In-vitro Degradation Behaviors of Poly(L-lactide-co-glycolide-co-Îμ-caprolactone) Microspheres. Journal of Macromolecular Science - Physics, 2021, 60, 521-529.	0.4	8
60	Preparation of Monodisperse Cationic Microspheres by Dispersion Polymerization of Styrene and a Cation-Charged Monomer in the Absence of a Stabilizer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 518-525.	1.2	7
61	Fabrication and Properties of Gelatin/Chitosan Microspheres Loaded with 5-Fluorouracil. Journal of Macromolecular Science - Physics, 2013, 52, 973-983.	0.4	7
62	Biocompatibility <i>In-vitro</i> of Gel/HA Composite Scaffolds Containing Nano-Bioactive Glass for Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 1048-1053.	1.2	7
63	Mechanical properties and nonisothermal crystallization kinetics of polyamide 6/functionalized TiO ₂ nanocomposites. Polymer Composites, 2014, 35, 294-300.	2.3	7
64	A Novel Route to Prepare Cationic Polystyrene Latex Particles with Monodispersity. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 271-278.	1.2	7
65	In-vitro degradation behavior and biological properties of a novel maleated poly (D,) Tj ETQq1 1 0.784314 rgBT 58, 209-218.	/Overlock 0.4	10 Tf 50 347 7
66	Polyurethane Synthetic Papers Based on Different Inorganic Fillers with Water and Fire Resistance. Macromolecular Materials and Engineering, 2019, 304, 1800473.	1.7	7
67	Efficient Synthesis of Isoquinoline and Its Derivatives: From Metal Đ¡atalysts to Catalyst-free Processes in Water. Russian Journal of General Chemistry, 2020, 90, 2012-2027.	0.3	7
68	Fabrication of Degradable Bone-Like Substitutes Based on Poly-L-lactide and Î ² -tricalcium Phosphate. Journal of Macromolecular Science - Physics, 2010, 49, 781-790.	0.4	6
69	Preparation and Properties of 2, 4-2-Isocyanic Acid Methyl Ester/Poly(ݵ-caprolactone)/Diethylene Glycol Hydrogels. Journal of Macromolecular Science - Physics, 2017, 56, 245-253.	0.4	6
70	Preparation and Properties of Poly(D,L-lactide-co-glycolide-co-ε-caprolactone)/1,4-Butanediamine Modified Poly(lactide-co-glycolide) Blend Porous Microspheres. Journal of Macromolecular Science - Physics, 2022, 61, 270-280.	0.4	6
71	A simple route to prepare pomegranateâ€like polystyreneâ€based microspheres with high porosity. Polymer International, 2011, 60, 1287-1290.	1.6	5
72	Simultaneous delivery of gene and chemotherapeutics via copolymeric micellar nanoparticles to overcome multiple drug resistance to promote synergistic tumor suppression. Journal of Biomaterials Applications, 2019, 34, 130-140.	1.2	5

#	Article	IF	Citations
73	Preparation and Degradation Behaviors of Poly(L-lactide-co-glycolide-co-Îμ-caprolactone)/1,4-butanediamine Modified Poly(lactic-co-glycolic acid) Blend Film. Journal of Macromolecular Science - Physics, 2020, 59, 491-501.	0.4	5
74	Fabrication of Poly-l-lactide Biomaterials with High Mechanical Properties Using Fiber Oriented Pressing. Journal of Macromolecular Science - Physics, 2008, 47, 847-858.	0.4	4
75	Biocompatibility properties of composite scaffolds based on 1,4-butanediamine modified poly(lactide-co-glycolide) and nanobioceramics. International Journal of Polymer Analysis and Characterization, 2019, 24, 428-438.	0.9	4
76	Preparation and Characterization of Poly(l-lactide-co-glycolide-co- $\hat{\mu}$ -caprolactone) Porous Microspheres. Journal of Macromolecular Science - Physics, 2021, 60, 313-323.	0.4	4
77	Preparation of doubly responsive polymer functionalized silica hybrid nanoparticles via a oneâ€pot thiolâ€isocyanate click reaction at room temperature. Polymer Composites, 2017, 38, 1454-1461.	2.3	3
78	Preparation and Properties of Sodium Alginate/Silk Fibroin Microcarriers. Journal of Macromolecular Science - Physics, 2022, 61, 636-648.	0.4	3
79	Evaluation of the potential cytotoxicity of metals associated with implanted biomaterials (II). Journal of Medical Engineering and Technology, 2010, 34, 455-461.	0.8	2
80	Preparation of Poly (L-lactic Acid) Microsphere. Journal of Macromolecular Science - Physics, 2010, 50, 300-305.	0.4	2
81	Biocompatibility In-vivo of Poly-L-lactide and Bioactive Glass Composite Substitute for Internal Fracture Fixation. Polymers and Polymer Composites, 2011, 19, 797-802.	1.0	2
82	Novel temperatureâ€sensitive and pHâ€sensitive polyurethane membranes: preparation and characterization. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 193-200.	0.8	2
83	A Novel Amphiphilic AIE Molecule and Its Application in Thermosensitive Liposome. ChemistrySelect, 2019, 4, 5195-5198.	0.7	2
84	Preparation and Characterization of Poly(L-lactide-co-glycolide-co-Îμ-caprolactone)/Nano-biaoactive Glass-Nano-β-tricalcium Phosphate Composite Scaffolds. Journal of Macromolecular Science - Physics, 2020, 59, 415-425.	0.4	2
85	The relationship between typical heavy metal content and physiological indexes of shrubs in bioretention facilities. Hydrology Research, 2021, 52, 1132-1142.	1.1	2
86	Onsite Tests and Numerical Simulation of Broken Rock Zones in Surrounding Rocks of Seepage Roadways under Blasting. Geofluids, 2020, 2020, 1-8.	0.3	2
87	A discrete Fourier transform-based method for Nyquist signal shaping in VLC-SCFDE system. , 2018, , .		1
88	Preparation and Characterization of Poly(L-lactide-co-glycolide-co-ε-caprolactone)/1,4-Butanediamine Modified Maleated Poly(D,L-lactide-co-glycolide) Blend Porous Films. Journal of Macromolecular Science - Physics, 2021, 60, 51-62.	0.4	1
89	Preparation and Characterization of Poly(lactide-co-glycolide-co-ε-caprolactone)- 1,4-Butanediamine-Modified Poly(lactide-co-glycolide)/Nano-Biaoactive Glass-β-Tricalcium Phosphate Composite Scaffolds. Journal of Macromolecular Science - Physics, 2022, 61, 622-635.	0.4	1
90	Preparation and Characterization of Nanocomposite Scaffolds Based on Polycaprolactone-Polyethylene Glycol/Methylene Diphenyl Diisocyanate/Diethylene Glycol and Nano-Bioactive Glass. Journal of Macromolecular Science - Physics, 2019, 58, 442-451.	0.4	0