Léon Chafik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5047315/publications.pdf

Version: 2024-02-01

394421 395702 1,172 39 19 33 citations h-index g-index papers 50 50 50 2015 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 2020, 11, 585.	12.8	142
2	Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13784-13788.	7.1	127
3	Estimates of the Southern Ocean general circulation improved by animalâ€borne instruments. Geophysical Research Letters, 2013, 40, 6176-6180.	4.0	108
4	Volume, Heat, and Freshwater Divergences in the Subpolar North Atlantic Suggest the Nordic Seas as Key to the State of the Meridional Overturning Circulation. Geophysical Research Letters, 2019, 46, 4799-4808.	4.0	75
5	The Lofoten Vortex of the Nordic Seas. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 96, 1-14.	1.4	57
6	North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era. Scientific Reports, 2019, 9, 1041.	3.3	56
7	Data-driven reconstruction reveals large-scale ocean circulation control on coastal sea level. Nature Climate Change, 2021, 11, 514-520.	18.8	40
8	On the Recent Ambiguity of the North Atlantic Subpolar Gyre Index. Journal of Geophysical Research: Oceans, 2018, 123, 5072-5076.	2.6	39
9	On the flow of <scp>A</scp> tlantic water and temperature anomalies in the <scp>N</scp> ordic <scp>S</scp> eas toward the <scp>A</scp> rctic <scp>O</scp> cean. Journal of Geophysical Research: Oceans, 2015, 120, 7897-7918.	2.6	36
10	On the spatial structure and temporal variability of poleward transport between Scotland and Greenland. Journal of Geophysical Research: Oceans, 2014, 119, 824-841.	2.6	34
11	Impact of North Atlantic Teleconnection Patterns on Northern European Sea Level. Journal of Marine Science and Engineering, 2017, 5, 43.	2.6	34
12	Gulf Stream Excursions and Sectional Detachments Generate the Decadal Pulses in the Atlantic Multidecadal Oscillation. Journal of Climate, 2018, 31, 2853-2870.	3.2	33
13	On the longâ€term stability of the Lofoten Basin Eddy. Journal of Geophysical Research: Oceans, 2016, 121, 4438-4449.	2.6	30
14	A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016. Communications Earth & Environment, 2021, 2, .	6.8	29
15	Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model. Earth System Dynamics, 2013, 4, 1-10.	7.1	26
16	A Direct Estimate of Volume, Heat, and Freshwater Exchange Across the Greenlandâ€Icelandâ€Faroeâ€Scotland Ridge. Journal of Geophysical Research: Oceans, 2018, 123, 7139-7153.	2.6	26
17	Global linkages originating from decadal oceanic variability in the subpolar North Atlantic. Geophysical Research Letters, 2016, 43, 10,909.	4.0	25
18	Representation of Multidecadal Sahel Rainfall Variability in 20th Century Reanalyses. Scientific Reports, 2018, 8, 10937.	3.3	21

#	Article	IF	CITATIONS
19	Mechanisms of Decadal North Atlantic Climate Variability and Implications for the Recent Cold Anomaly. Journal of Climate, 2021, 34, 3421-3439.	3.2	21
20	Arctic Ocean and Hudson Bay Freshwater Exports: New Estimates from Seven Decades of Hydrographic Surveys on the Labrador Shelf. Journal of Climate, 2020, 33, 8849-8868.	3.2	21
21	The response of the circulation in the Faroe-Shetland Channel to the North Atlantic Oscillation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 18423.	1.7	19
22	Discovery of an unrecognized pathway carrying overflow waters toward the Faroe Bank Channel. Nature Communications, 2020, 11, 3721.	12.8	18
23	What can Hydrography Tell Us About the Strength of the Nordic Seas MOC Over the Last 70 to 100ÂYears?. Geophysical Research Letters, 2020, 47, e2020GL087456.	4.0	18
24	Recent subsurface North Atlantic cooling trend in context of Atlantic decadal-to-multidecadal variability. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 70, 1481688.	1.7	16
25	A direct estimate of poleward volume, heat, and freshwater fluxes at 59.5°N between Greenland and Scotland. Journal of Geophysical Research: Oceans, 2017, 122, 5870-5887.	2.6	15
26	Subpolar gyre and temperature drive boreal fish abundance in Greenland waters. Fish and Fisheries, 2021, 22, 161-174.	5.3	14
27	Wintertime <i>f</i> CO ₂ Variability in the Subpolar North Atlantic Since 2004. Geophysical Research Letters, 2019, 46, 1580-1590.	4.0	13
28	North Atlantic extratropical and subpolar gyre variability during the last 120Âyears: a gridded dataset of surface temperature, salinity, and density. Part 1: dataset validation and RMS variability. Ocean Dynamics, 2019, 69, 385-403.	2.2	11
29	Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1794236.	1.6	11
30	Interconnectivity Between Volume Transports Through Arctic Straits. Journal of Geophysical Research: Oceans, 2018, 123, 8714-8729.	2.6	10
31	North Atlantic subpolar gyre along predetermined ship tracks since 1993: a monthly data set of surface temperature, salinity, and density. Earth System Science Data, 2018, 10, 1403-1415.	9.9	9
32	Mechanisms of decadal changes in sea surface height and heat content in the eastern Nordic Seas. Ocean Science, 2020, 16, 715-728.	3.4	9
33	The Norwegian Sea Gyre – A Regulator of Iceland-Scotland Ridge Exchanges. Frontiers in Marine Science, 2021, 8, .	2.5	7
34	The relationship between the eddy-driven jet stream and northern European sea level variability. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1886419.	1.7	5
35	Sea-level variability and change along the Norwegian coast between 2003 and 2018 from satellite altimetry, tide gauges, and hydrography. Ocean Science, 2022, 18, 331-359.	3.4	5
36	Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements. Remote Sensing, 2018, 10, 166.	4.0	4

LéON CHAFIK

#	Article	IF	CITATIONS
37	Rapid Communication of Upperâ€Ocean Salinity Anomaly to Deep Waters of the Iceland Basin Indicates an AMOC Shortâ€Cut. Geophysical Research Letters, 2022, 49, .	4.0	3
38	A Satelliteâ€Based Lagrangian Perspective on Atlantic Water Fractionation Between Arctic Gateways. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017248.	2.6	2
39	Linking Coherent Anticyclonic Eddies in the Iceland Basin to Decadal Oceanic Variability in the Subpolar North Atlantic. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	0