
Hui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5047137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food and Bioproducts Processing, 2014, 92, 30-37.	1.8	217
2	Characteristics and antioxidant activities of ovalbumin glycated with different saccharides under heat moisture treatment. Food Research International, 2012, 48, 866-872.	2.9	92
3	Glycosylated fish gelatin emulsion: Rheological, tribological properties and its application as model coffee creamers. Food Hydrocolloids, 2020, 102, 105552.	5.6	68
4	Investigation into allergenicity reduction and glycation sites of glycated β-lactoglobulin with ultrasound pretreatment by high-resolution mass spectrometry. Food Chemistry, 2018, 252, 99-107.	4.2	65
5	Improved Glycation after Ultrasonic Pretreatment Revealed by High-Performance Liquid Chromatography–Linear Ion Trap/Orbitrap High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 2522-2530.	2.4	54
6	Mechanism of Reduction in IgG and IgE Binding of β-Lactoglobulin Induced by Ultrasound Pretreatment Combined with Dry-State Glycation: A Study Using Conventional Spectrometry and High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 8018-8027.	2.4	52
7	Glycation of ovalbumin after highâ€intensity ultrasound pretreatment: effects on conformation, immunoglobulin (Ig)G/IgE binding ability and antioxidant activity. Journal of the Science of Food and Agriculture, 2018, 98, 3767-3773.	1.7	52
8	Increase of Ovalbumin Glycation by the Maillard Reaction after Disruption of the Disulfide Bridge Evaluated by Liquid Chromatography and High Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2013, 61, 2253-2262.	2.4	50
9	Highâ€intensity ultrasound enhances the immunoglobulin (Ig)G and <scp>IgE</scp> binding of ovalbumin. Journal of the Science of Food and Agriculture, 2017, 97, 2714-2720.	1.7	46
10	Glycation of β-lactoglobulin under dynamic high pressure microfluidization treatment: Effects on IgE-binding capacity and conformation. Food Research International, 2016, 89, 882-888.	2.9	45
11	Glycation promoted by dynamic high pressure microfluidisation pretreatment revealed by high resolution mass spectrometry. Food Chemistry, 2013, 141, 3250-3259.	4.2	42
12	Monitoring of the functional properties and unfolding change of Ovalbumin after DHPM treatment by HDX and FTICR MS. Food Chemistry, 2017, 227, 413-421.	4.2	42
13	Identification of glycated sites in ovalbumin under freeze-drying processing by liquid chromatography high-resolution mass spectrometry. Food Chemistry, 2017, 226, 1-7.	4.2	41
14	Insights into the Mechanism of Quercetin against BSA-Fructose Glycation by Spectroscopy and High-Resolution Mass Spectrometry: Effect on Physicochemical Properties. Journal of Agricultural and Food Chemistry, 2019, 67, 236-246.	2.4	39
15	Structural Properties, Bioactivities, and Applications of Polysaccharides from Okra [<i>Abelmoschus esculentus</i> (L.) Moench]: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 14091-14103.	2.4	39
16	Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry. Food Chemistry, 2013, 141, 985-991.	4.2	38
17	Microwave heating enhances antioxidant and emulsifying activities of ovalbumin glycated with glucose in solid-state. Journal of Food Science and Technology, 2015, 52, 1453-1461.	1.4	36
18	Ultrasonic Pretreatment Combined with Dry-State Glycation Reduced the Immunoglobulin E/Immunoglobulin G-Binding Ability of α-Lactalbumin Revealed by High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2018, 66, 5691-5698.	2.4	34

Hui Wang

#	Article	IF	CITATIONS
19	Investigation of the Mechanism of Conformational Alteration in Ovalbumin as Induced by Glycation with Different Monoses through Conventional Spectrometry and Liquid Chromatography High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2019, 67, 3096-3105.	2.4	34
20	Immunogenic and structural properties of ovalbumin treated by pulsed electric fields. International Journal of Food Properties, 2017, 20, S3164-S3176.	1.3	33
21	Improved Antioxidant Activity and Glycation of α-Lactalbumin after Ultrasonic Pretreatment Revealed by High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 10317-10324.	2.4	30
22	The Mechanism of Decreased IgG/IgE-Binding of Ovalbumin by Preheating Treatment Combined with Glycation Identified by Liquid Chromatography and High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2018, 66, 10693-10702.	2.4	30
23	Insight into the Mechanism of Reduced IgG/IgE Binding Capacity in Ovalbumin as Induced by Glycation with Monose Epimers through Liquid Chromatography and High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 6065-6075.	2.4	28
24	The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS. Food and Function, 2018, 9, 417-425.	2.1	27
25	Liquid Chromatography High-Resolution Mass Spectrometry Identifies the Glycation Sites of Bovine Serum Albumin Induced by <scp>d</scp> -Ribose with Ultrasonic Treatment. Journal of Agricultural and Food Chemistry, 2018, 66, 563-570.	2.4	26
26	Mechanism of the effect of 2, 2′-azobis (2-amidinopropane) dihydrochloride simulated lipid oxidation on the IgG/IgE binding ability of ovalbumin. Food Chemistry, 2020, 327, 127037.	4.2	25
27	Functional properties and structure changes of soybean protein isolate after subcritical water treatment. Journal of Food Science and Technology, 2014, 52, 3412-21.	1.4	23
28	LC-Orbitrap MS analysis of the glycation modification effects of ovalbumin during freeze-drying with three reducing sugar additives. Food Chemistry, 2018, 268, 171-178.	4.2	23
29	Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment. Food Chemistry, 2016, 210, 141-147.	4.2	22
30	The Reduction in the IgE-Binding Ability of β-Lactoglobulin by Dynamic High-Pressure Microfluidization Coupled with Glycation Treatment Revealed by High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 6179-6187.	2.4	22
31	Comparison of ovalbumin glycation by microwave irradiation and conventional heating. LWT - Food Science and Technology, 2019, 116, 108560.	2.5	22
32	Mechanism of the Reduced IgG/IgE Binding Abilities of Glycated β-Lactoglobulin and Its Digests through High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2021, 69, 3741-3750.	2.4	22
33	Investigation of conformation change of glycated ovalbumin obtained by Co-60 gamma-ray irradiation under drying treatment. Innovative Food Science and Emerging Technologies, 2018, 47, 286-291.	2.7	20
34	Nelumbo nucifera leaf extracts inhibit the formation of advanced glycation end-products and mechanism revealed by Nano LC-Orbitrap-MS/MS. Journal of Functional Foods, 2018, 42, 254-261.	1.6	19
35	Conformational alteration and the glycated sites in ovalbumin during vacuum freeze-drying induced glycation: A study using conventional spectrometry and liquid chromatography–high resolution mass spectrometry. Food Chemistry, 2020, 318, 126519.	4.2	19
36	Structural changes of ultrasonicated bovine serum albumin revealed by hydrogen–deuterium exchange and mass spectrometry. Analytical and Bioanalytical Chemistry, 2014, 406, 7243-7251.	1.9	15

Hui Wang

#	Article	IF	CITATIONS
37	Probing the conformational changes of ovalbumin after glycation using HDX-MS. Food Chemistry, 2015, 166, 62-67.	4.2	14
38	The IgE/IgG binding capacity and structural changes of Alaska Pollock parvalbumin glycated with different reducing sugars. Journal of Food Biochemistry, 2021, 45, e13539.	1.2	13
39	Effects of Superheated Steam Treatment on the Allergenicity and Structure of Chicken Egg Ovomucoid. Foods, 2022, 11, 238.	1.9	13
40	Morphological and structural characteristics of rice amylose by dynamic highâ€pressure microfluidization modification. Journal of Food Processing and Preservation, 2018, 42, e13764.	0.9	12
41	Mechanism on the Allergenicity Changes of α-Lactalbumin Treated by Sonication-Assisted Glycation during <i>In Vitro</i> Gastroduodenal Digestion. Journal of Agricultural and Food Chemistry, 2021, 69, 6850-6859.	2.4	12
42	Influence of Ultrasonication Prior to Glycation on the Physicochemical Properties of Bovine Serum Albumin–galactose Conjugates. Food Science and Technology Research, 2018, 24, 35-44.	0.3	10
43	Investigation of the effect of oxidation on the structure of β-lactoglobulin by high resolution mass spectrometry. Food Chemistry, 2021, 339, 127939.	4.2	9
44	Insight into the mechanism of d-allose in reducing the allergenicity and digestibility of ultrasound-pretreated α-lactalbumin by high-resolution mass spectrometry. Food Chemistry, 2022, 374, 131616.	4.2	9
45	Mechanism of Selenium Nanoparticles Inhibiting Advanced Glycation End Products. Journal of Agricultural and Food Chemistry, 2020, 68, 10586-10595.	2.4	8
46	The reduction in the immunoglobulin G and immunoglobulin E binding capacity of β-lactoglobulin via spray-drying technology. Journal of Dairy Science, 2020, 103, 2993-3001.	1.4	8
47	Investigation of the mechanism underlying the influence of mild glycation on the digestibility and IgC/IgE-binding abilities of β-lactoglobulin and its digests through LC orbitrap MS/MS. LWT - Food Science and Technology, 2021, 139, 110506.	2.5	8
48	Enzymolysis Reaction Kinetics and Liquid Chromatography High-Resolution Mass Spectrometry Analysis of Ovalbumin Glycated with Microwave Radiation. Journal of Agricultural and Food Chemistry, 2020, 68, 10596-10608.	2.4	7
49	Mechanism of viscosity reduction of okra pectic polysaccharide by ascorbic acid. Carbohydrate Polymers, 2022, 284, 119196.	5.1	7
50	Analysis of the Structure and Antigenicity in Ovalbumin Modified with Six Disaccharides Through Liquid Chromatography–High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2022, 70, 3096-3108.	2.4	6
51	Insight into the mechanism of urea inhibit ovalbumin-glucose glycation by conventional spectrometry and liquid chromatography-high resolution mass spectrometry. Food Chemistry, 2021, 342, 128340.	4.2	5
52	A comparative analysis of the antigenicity and the major components formed from the glucose/ovalbumin model system under microwave irradiation and conventional heating. Journal of Food Processing and Preservation, 2018, 42, e13818.	0.9	4
53	Investigation on the Anaphylaxis and Anti-Digestive Stable Peptides Identification of Ultrasound-Treated α-Lactalbumin during In-Vitro Gastroduodenal Digestion. Foods, 2021, 10, 2760.	1.9	4
54	Isolation and allergenicity evaluation of glycated α-lactalbumin digestive products and identification of allergenic peptides. Food Chemistry, 2022, 390, 133185.	4.2	4