
Julia Baruque-Ramos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5047082/publications.pdf Version: 2024-02-01

ILLIA RAPHOLE-RAMOS

#	Article	IF	CITATIONS
1	Cellulosic Fabric-Reinforced Cementitious Matrix (FRCM): Ligaments, Treatments, and Employment. Materials Circular Economy, 2022, 4, 1.	3.2	1
2	Brazilian Agro-industrial Wastes as Potential Textile and Other Raw Materials: a Sustainable Approach. Materials Circular Economy, 2022, 4, 1.	3.2	11
3	Environmental Impacts of Polyester-Cotton Blend Compared to Cotton Fiber in Brazil. Materials Circular Economy, 2022, 4, 1.	3.2	2
4	Cotton Weaving Waste Incorporation in PVC Composites. Materials Circular Economy, 2022, 4, 1.	3.2	1
5	Brazilian Cotton Jeans Recycling: Characterization of Shredded Pre-consumer Waste. Materials Circular Economy, 2022, 4, .	3.2	3
6	From fashion to farm: Green marketing innovation strategies in the Brazilian organic cotton ecosystem. Journal of Cleaner Production, 2022, 360, 132196.	9.3	8
7	Circular economy indicators for measuring social innovation in the Brazilian textile and fashion industry. Journal of Cleaner Production, 2022, 363, 132485.	9.3	18
8	Banana Pseudostem Fibers (Musa sp.—cultivar AAB Prata): Physicochemical Characteristics. Materials Circular Economy, 2022, 4, .	3.2	0
9	Brazilian Organic Cotton Network: Sustainable Driver for the Textile and Clothing Sector. Textile Science and Clothing Technology, 2021, , 279-326.	0.5	0
10	Innovation Ecosystem framework directed to Sustainable Development Goal #17 partnerships implementation. Sustainable Development, 2021, 29, 1018-1036.	12.5	30
11	COMPÓSITO DE FIBRA DE TURURI: CONFECÇÃO E POTENCIALIDADE COMO MATERIAL SUSTENTÃVEL. Mix Sustentável, 2021, 7, 161-172.	0.0	1
12	Viver de Costura®: capacitação em costura de agentes multiplicadores / Viver de Costura®: guidance in sewing of multiplying agentes. Brazilian Journal of Development, 2021, 7, 96238-96262.	0.1	0
13	Biocomposites from Cotton Denim Waste for Footwear Components. Materials Circular Economy, 2021, 3, 1.	3.2	11
14	Effect of structural parameters on the impact properties of multilayer composites from Tururi palm (Manicaria saccifera Gaertn.) fibrous material. Journal of Natural Fibers, 2020, 17, 284-297.	3.1	1
15	Natural textile fibers in contemporary Brazilian jewelry. SN Applied Sciences, 2020, 2, 1.	2.9	3
16	Laundering and textile parameters influence fibers release in household washings. Environmental Pollution, 2020, 257, 113553.	7.5	98
17	Amazonian tucum (Astrocaryum chambira Burret) leaf fiber and handcrafted yarn characterization. SN Applied Sciences, 2020, 2, 1.	2.9	4
18	Brazilian Sustainability Outlook in Footwear Sector. Textile Science and Clothing Technology, 2020, , 199-260.	0.5	2

Julia Baruque-Ramos

#	Article	IF	CITATIONS
19	Textile natural fibers production regarding the agroforestry approach. SN Applied Sciences, 2019, 1, 1.	2.9	16
20	Panorama of natural fibers applied in Brazilian footwear: materials and market. SN Applied Sciences, 2019, 1, 1.	2.9	16
21	Biomordants and new alternatives to the sustainable natural fiber dyeings. SN Applied Sciences, 2019, 1, 1.	2.9	17
22	Brazilian potential for circular fashion through strengthening local production. SN Applied Sciences, 2019, 1, 1.	2.9	5
23	Homewear in Brazil: evolution from 1976 to present. SN Applied Sciences, 2019, 1, 1.	2.9	0
24	The influence of textile materials on flame resistance ratings of professional uniforms. SN Applied Sciences, 2019, 1, 1.	2.9	3
25	CHEMICAL CHARACTERIZATION OF AMAZONIAN NON-POLAR VEGETAL EXTRACTS (BURITI, TUCUMÃ, BRAZIL) 1 Infarma: Pharmaceutical Sciences, 2019, 31, 163.	j ETQq1 1 0.0	0.784314 rg 5
26	Textile Palm Fibers from Amazon Biome. , 2019, , .		9
27	Industrial textile recycling and reuse in Brazil: case study and considerations concerning the circular economy. Gestão & Produção, 2018, 25, 431-443.	0.5	46
28	Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Science of the Total Environment, 2017, 598, 1116-1129.	8.0	489
29	Trousseau: The Predominance of Cotton in its Articles. Procedia Engineering, 2017, 200, 73-80.	1.2	2
30	Brazilian silk production: economic and sustainability aspects. Procedia Engineering, 2017, 200, 89-95.	1.2	11
31	Flammability on textile of business uniforms: use of natural fibers. Procedia Engineering, 2017, 200, 148-154.	1.2	14
32	Effect of structural parameters on the tensile properties of multilayer 3D composites from Tururi palm tree (Manicaria saccifera Gaertn) fibrous material. Composites Part B: Engineering, 2017, 111, 17-26.	12.0	12
33	Social and economic importance of textile reuse and recycling in Brazil. IOP Conference Series: Materials Science and Engineering, 2017, 254, 192003.	0.6	14
34	Silk industry and carbon footprint mitigation. IOP Conference Series: Materials Science and Engineering, 2017, 254, 192008.	0.6	10
35	Trousseau: economic and design aspects from the second half of 20th century in Brazil. IOP Conference Series: Materials Science and Engineering, 2017, 254, 172015.	0.6	1
36	Flammability on textile of flight crew professional clothing. IOP Conference Series: Materials Science and Engineering, 2017, 254, 052006.	0.6	3

Julia Baruque-Ramos

#	Article	IF	CITATIONS
37	Dyeability of Polyester and Polyamide Fabrics Employing Citric Acid. Journal of Textile Science and Technology, 2017, 03, 31-44.	0.7	4
38	New Technologies Applied to the Fashion Visual Merchandising. Modern Economy, 2017, 08, 412-429.	0.5	4
39	Polysaccharide Production in Pilot Scale Bioreactor Cultivations of Neisseria meningitidis Serogroup C. Current Biochemical Engineering, 2016, 3, 154-162.	1.3	0
40	Amazonian Tururi Palm Fiber Material (Manicaria saccifera Gaertn.). RILEM Bookseries, 2016, , 127-137.	0.4	6
41	Brazilian Scope of Management and Recycling of Textile Wastes. RILEM Bookseries, 2016, , 429-439.	0.4	4
42	Brazilian Buriti Palm Fiber (Mauritia flexuosa Mart.). RILEM Bookseries, 2016, , 89-98.	0.4	7
43	Tururi palm fibrous material (<i>Manicaria saccifera</i> Gaertn.) characterization. Green Materials, 2015, 3, 120-131.	2.1	5
44	Thermoset composites reinforced with recycled cotton textile residues. Textiles and Clothing Sustainability, 2015, 1, .	1.2	34
45	Reciclagem de resÃduos do setor têxtil e confeccionista no Brasil:. Sustentabilidade Em Debate, 2015, 6, 50-69.	0.2	11
46	Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process. Vaccine, 2012, 30, 6064-6069.	3.8	18
47	Culture medium of diluted skimmed milk for the production of nisin in batch cultivations. Annals of Microbiology, 2012, 62, 419-426.	2.6	13
48	Production of outer membrane vesicles (OMV) in batch cultivation of Neisseria meningitidis serogroup B. Brazilian Journal of Microbiology, 2006, 37, 488-493.	2.0	5
49	Accumulation of organic acids in cultivations of Neisseria meningitidis C. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 869-877.	3.0	7
50	Polysaccharide production of Neisseria meningitidis (Serogroup C) in batch and fed-batch cultivations. Biochemical Engineering Journal, 2005, 23, 231-240.	3.6	8
51	Influence of initial L-asparagine and glycerol concentrations on the batch growth kinetics of Mycobacterium bovis BCG. Brazilian Journal of Microbiology, 2004, 35, 337-344.	2.0	2
52	Characterization of Polysaccharide Production of Haemophilus influenzae Type b and Its Relationship to Bacterial Cell Growth. Applied Biochemistry and Biotechnology, 2003, 110, 91-100.	2.9	14
53	Polysaccharide production in batch process of Neisseria meningitidis serogroup C comparing Frantz, modified Frantz and Cartlin 6 cultivation media. Brazilian Journal of Microbiology, 2003, 34, 27-32.	2.0	12
54	Nitrogen consumption during batch cultivation of Neisseria meningitidis (serogroup C) in Frantz medium. Brazilian Journal of Microbiology, 2001, 32, 305.	2.0	7

#	Article	IF	CITATIONS
55	Purification of meningococcal group C polysaccharide by a procedure suitable for scale-up. Journal of Microbiological Methods, 1996, 27, 19-23.	1.6	18
56	Study of the Potential Employment of Malvaceae Species in Composites Materials. Key Engineering Materials, 0, 668, 75-85.	0.4	1
57	Buriti Palm Fiber (<i>Mauritia flexuosa</i> MART.): Characterization and Studies for its Application in Design Products. Key Engineering Materials, 0, 668, 63-74.	0.4	9