Gabriel Birkus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5047025/publications.pdf

Version: 2024-02-01

289141 257357 2,223 41 24 h-index citations papers

40 g-index 41 41 41 2321 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessment of Mitochondrial Toxicity in Human Cells Treated with Tenofovir: Comparison with Other Nucleoside Reverse Transcriptase Inhibitors. Antimicrobial Agents and Chemotherapy, 2002, 46, 716-723.	1.4	425
2	Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney International, 2014, 86, 350-357.	2.6	198
3	Crystal Structures of HIV-1 Reverse Transcriptase with Etravirine (TMC125) and Rilpivirine (TMC278): Implications for Drug Design. Journal of Medicinal Chemistry, 2010, 53, 4295-4299.	2.9	191
4	Cathepsin A Is the Major Hydrolase Catalyzing the Intracellular Hydrolysis of the Antiretroviral Nucleotide Phosphonoamidate Prodrugs GS-7340 and GS-9131. Antimicrobial Agents and Chemotherapy, 2007, 51, 543-550.	1.4	156
5	Tenofovir exhibits low cytotoxicity in various human cell types: comparison with other nucleoside reverse transcriptase inhibitors. Antiviral Research, 2002, 54, 37-45.	1.9	118
6	Synthesis and Significant Cytostatic Activity of 7-Hetaryl-7-deazaadenosines. Journal of Medicinal Chemistry, 2011, 54, 5498-5507.	2.9	101
7	Activation of 9-[(<i>R</i>)-2-[[(<i>S</i>)-[[(<i>S</i>)-1-(Isopropoxycarbonyl)ethyl]amino] phenoxyphosphinyl]-methoxy]propyl]adenine (GS-7340) and Other Tenofovir Phosphonoamidate Prodrugs by Human Proteases. Molecular Pharmacology, 2008, 74, 92-100.	1.0	92
8	GS-9219â€"A Novel Acyclic Nucleotide Analogue with Potent Antineoplastic Activity in Dogs with Spontaneous Nonâ€"Hodgkin's Lymphoma. Clinical Cancer Research, 2008, 14, 2824-2832.	3.2	74
9	6-(Het)aryl-7-Deazapurine Ribonucleosides as Novel Potent Cytostatic Agents. Journal of Medicinal Chemistry, 2010, 53, 460-470.	2.9	73
10	Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors. Antimicrobial Agents and Chemotherapy, 2016, 60, 316-322.	1.4	59
11	Discovery of GS-9131: Design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148. Bioorganic and Medicinal Chemistry, 2010, 18, 3606-3617.	1.4	57
12	Highly Selective Phosphatidylinositol 4-Kinase IIIÎ ² Inhibitors and Structural Insight into Their Mode of Action. Journal of Medicinal Chemistry, 2015, 58, 3767-3793.	2.9	54
13	Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIÎ ² (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. Journal of Medicinal Chemistry, 2017, 60, 100-118.	2.9	50
14	Evaluation of the Effect of Cobicistat on the <i>In Vitro</i> Renal Transport and Cytotoxicity Potential of Tenofovir. Antimicrobial Agents and Chemotherapy, 2013, 57, 4982-4989.	1.4	41
15	Metabolism and Pharmacokinetics of the Anti-Hepatitis C Virus Nucleotide Prodrug GS-6620. Antimicrobial Agents and Chemotherapy, 2014, 58, 1943-1951.	1.4	40
16	Tenofovir Diphosphate Is a Poor Substrate and a Weak Inhibitor of Rat DNA Polymerases \hat{l}_{\pm} , \hat{l}'_{τ} , and \hat{l}_{μ}^* . Antimicrobial Agents and Chemotherapy, 2002, 46, 1610-1613.	1.4	39
17	Inhibition of Hepatitis C Virus Replication by GS-6620, a Potent <i>C</i> -Nucleoside Monophosphate Prodrug. Antimicrobial Agents and Chemotherapy, 2014, 58, 1930-1942.	1.4	38
18	GS-9191 Is a Novel Topical Prodrug of the Nucleotide Analog 9-(2-Phosphonylmethoxyethyl)Guanine with Antiproliferative Activity and Possible Utility in the Treatment of Human Papillomavirus Lesions. Antimicrobial Agents and Chemotherapy, 2009, 53, 2777-2784.	1.4	37

#	Article	IF	Citations
19	Metabolism and Antiretroviral Activity of Tenofovir Alafenamide in CD4 ⁺ T-Cells and Macrophages from Demographically Diverse Donors. Antiviral Therapy, 2014, 19, 669-677.	0.6	37
20	Multiple Classes of Antiviral Agents Exhibit <i>In Vitro</i> Activity against Human Rhinovirus Type C. Antimicrobial Agents and Chemotherapy, 2014, 58, 1546-1555.	1.4	36
21	Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8192-8197.	3.3	33
22	Sugar-modified derivatives of cytostatic 7-(het)aryl-7-deazaadenosines: $2\hat{a}\in^2$ -C-methylribonucleosides, $2\hat{a}\in^2$ -deoxy- $2\hat{a}\in^2$ -fluoroarabinonucleosides, arabinonucleosides and $2\hat{a}\in^2$ -deoxyribonucleosides. Bioorganic and Medicinal Chemistry, 2012, 20, 5202-5214.	1.4	31
23	<i>Cyclo</i> Salâ€phosphate Pronucleotides of Cytostatic 6â€(Het)arylâ€7â€deazapurine Ribonucleosides: Synthesis, Cytostatic Activity, and Inhibition of Adenosine Kinases. ChemMedChem, 2010, 5, 1386-1396.	1.6	29
24	Phosphoramidate pronucleotides of cytostatic 6-aryl-7-deazapurine ribonucleosides. Bioorganic and Medicinal Chemistry, 2011, 19, 229-242.	1.4	25
25	Role of Cathepsin A and Lysosomes in the Intracellular Activation of Novel Antipapillomavirus Agent GS-9191. Antimicrobial Agents and Chemotherapy, 2011, 55, 2166-2173.	1.4	23
26	Discovery of \hat{l}^2 -d- $2\hat{a}$ eoxy- $2\hat{a}$ evaluated in Discovery of \hat{l}^2 -d- $2\hat{a}$ evaluated in Discovery of \hat{l}^2 -deoxy- $2\hat{a}$ evaluated in Discovery syncytial virus with excellent selectivity over mitochondrial RNA and DNA polymerases. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2484-2487.	bitor 1.0	23
27	Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angewandte Chemie - International Edition, 2021, 60, 10172-10178.	7.2	22
28	9-[2-(phosphonomethoxy)ethyl]adenine diphosphate (PMEApp) as a substrate toward replicative DNA polymerases \hat{l}_{\pm} , \hat{l} , \hat{l}_{μ} , and $\hat{l}_{\mu}\hat{a}$ —. Biochemical Pharmacology, 1999, 58, 487-492.	2.0	21
29	Molecular Determinants of GS-9620-Dependent TLR7 Activation. PLoS ONE, 2016, 11, e0146835.	1.1	17
30	Protein–Ligand Interactions in the STING Binding Site Probed by Rationally Designed Single-Point Mutations: Experiment and Theory. Biochemistry, 2021, 60, 607-620.	1.2	15
31	Purine analogs as phosphatidylinositol 4-kinase $III\hat{I}^2$ inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2706-2712.	1.0	12
32	DNA-Polymerases \hat{l}_{\pm} , \hat{l}' and \hat{l}_{μ} from T-Cell Spontaneous Lymphoblastic Leukemia of Sprague-Dawley Inbred Rat: Isolation and Characterization. Collection of Czechoslovak Chemical Communications, 1995, 60, 1555-1572.	1.0	8
33	STING Agonist-Mediated Cytokine Secretion Is Accompanied by Monocyte Apoptosis. ACS Infectious Diseases, 2022, 8, 463-471.	1.8	8
34	The Substrate Activity of $(\langle i \rangle S \langle i \rangle)$ -9-[3-Hydroxy-(2-phosphonomethoxy)Propyl]Adenine Diphosphate toward DNA Polymerases \hat{l}_{\pm} , \hat{l}' and \hat{l}_{μ} . Antiviral Chemistry and Chemotherapy, 2004, 15, 23-33.	0.3	7
35	Discovery of a 2′-fluoro-2′- C -methyl C -nucleotide HCV polymerase inhibitor and a phosphoramidate prodrug with favorable properties. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1840-1847.	1.0	7
36	Interactions of 1-[(S)-3-Hydroxy-2-(phosphonomethoxy)propyl]cytosine (Cidofovir) Diphosphate with DNA Polymerases \hat{l}_{\pm} , \hat{l}' and \hat{l}_{μ} *. Collection of Czechoslovak Chemical Communications, 2001, 66, 1698-1706.	1.0	7

#	Article	IF	CITATIONS
37	Nucleotide Prodrug Containing a Nonproteinogenic Amino Acid To Improve Oral Delivery of a Hepatitis C Virus Treatment. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	6
38	Nonproteolyzed Form of DNA-Polymerase $\hat{l}\mu$ from T-Cell Spontaneous Lymphoma of Sprague-Dawley Inbred Rat: Isolation and Characterization. Collection of Czechoslovak Chemical Communications, 1998, 63, 723-731.	1.0	6
39	Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angewandte Chemie, 2021, 133, 10260-10266.	1.6	3
40	Synthesis of phosphonate derivatives of 2′-deoxy-2′-fluorotetradialdose d-nucleosides and tetradialdose d-nucleosides. Tetrahedron, 2021, 89, 132159.	1.0	3
41	HPMPApp as a substrate toward replicative DNA polymerases \hat{l}_{\pm} , \hat{l}' and \hat{l}_{μ} . , 1999, , .		1