

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046972/publications.pdf Version: 2024-02-01

Ηλο Υμ

#	Article	IF	CITATIONS
1	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
2	Hybrids of Two-Dimensional Ti ₃ C ₂ and TiO ₂ Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces, 2016, 8, 6051-6060.	4.0	653
3	Phosphorusâ€Đoped Graphite Layers with High Electrocatalytic Activity for the O ₂ Reduction in an Alkaline Medium. Angewandte Chemie - International Edition, 2011, 50, 3257-3261.	7.2	647
4	High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy, 2018, 53, 97-107.	8.2	300
5	Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. Journal of Solid State Chemistry, 2008, 181, 130-136.	1.4	282
6	A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceramics International, 2018, 44, 18886-18893.	2.3	276
7	Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures. Industrial & Engineering Chemistry Research, 2017, 56, 10689-10701.	1.8	267
8	Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sciences, 2009, 11, 129-138.	1.5	266
9	Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chemical Engineering Journal, 2019, 369, 292-301.	6.6	255
10	Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7827-7832.	3.3	249
11	2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 241, 236-245.	10.8	242
12	Selective Catalysis of the Aerobic Oxidation of Cyclohexane in the Liquid Phase by Carbon Nanotubes. Angewandte Chemie - International Edition, 2011, 50, 3978-3982.	7.2	234
13	Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon, 2013, 57, 433-442.	5.4	209
14	Carbocatalysis in Liquidâ€Phase Reactions. Angewandte Chemie - International Edition, 2017, 56, 936-964.	7.2	209
15	A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties. Journal of Materials Chemistry, 2012, 22, 17900.	6.7	206
16	Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. Journal of Materials Chemistry A, 2013, 1, 14853.	5.2	203
17	(111) TiO 2-x /Ti 3 C 2 : Synergy of active facets, interfacial charge transfer and Ti 3+ doping for enhance photocatalytic activity. Materials Research Bulletin, 2017, 89, 16-25.	2.7	190
18	Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development (Cambridge), 2007, 134, 2073-2081.	1.2	178

#	Article	IF	CITATIONS
19	Preparation and characterization of Cu2O/TiO2 nano–nano heterostructure photocatalysts. Catalysis Communications, 2009, 10, 1839-1843.	1.6	170
20	Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10, 1589-1596.	3.7	170
21	MnO ₂ /CNT Supported Pt and PtRu Nanocatalysts for Direct Methanol Fuel Cells. Langmuir, 2009, 25, 7711-7717.	1.6	169
22	Regulating Electron–Hole Separation to Promote Photocatalytic H ₂ Evolution Activity of Nanoconfined Ru/MXene/TiO ₂ Catalysts. ACS Nano, 2020, 14, 14181-14189.	7.3	160
23	Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: Effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. Journal of Catalysis, 2015, 325, 136-144.	3.1	154
24	Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chemical Communications, 2013, 49, 8151.	2.2	149
25	Hexavalent chromium removal over magnetic carbon nanoadsorbents: synergistic effect of fluorine and nitrogen co-doping. Journal of Materials Chemistry A, 2018, 6, 13062-13074.	5.2	145
26	Selective Allylic Oxidation of Cyclohexene Catalyzed by Nitrogen-Doped Carbon Nanotubes. ACS Catalysis, 2014, 4, 1617-1625.	5.5	143
27	Electrochemical Reduction of CO ₂ into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. ACS Applied Materials & Interfaces, 2018, 10, 20530-20539.	4.0	141
28	Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catalysis Communications, 2011, 12, 689-693.	1.6	138
29	Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies. Nano Energy, 2019, 60, 43-51.	8.2	136
30	GLABROUS INFLORESCENCE STEMS Modulates the Regulation by Gibberellins of Epidermal Differentiation and Shoot Maturation in Arabidopsis. Plant Cell, 2006, 18, 1383-1395.	3.1	134
31	Synthesis of porous Fe3O4/g-C3N4 nanospheres as highly efficient and recyclable photocatalysts. Materials Research Bulletin, 2013, 48, 1447-1452.	2.7	132
32	Enhanced photocatalytic CO2 reduction in H2O vapor by atomically thin Bi2WO6 nanosheets with hydrophobic and nonpolar surface. Applied Catalysis B: Environmental, 2021, 283, 119630.	10.8	131
33	Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance. Chemical Communications, 2011, 47, 10323.	2.2	128
34	Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction. Journal of Catalysis, 2017, 348, 100-109.	3.1	126
35	Microporous polyimide networks with large surface areas and their hydrogen storage properties. Chemical Communications, 2010, 46, 7730.	2.2	125
36	One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal. Carbon, 2016, 109, 640-649.	5.4	125

#	Article	IF	CITATIONS
37	Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. Journal of Power Sources, 2015, 286, 495-503.	4.0	121
38	Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance. Electrochemistry Communications, 2011, 13, 861-864.	2.3	120
39	Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium. Catalysis Communications, 2011, 16, 35-38.	1.6	114
40	Preparation of aluminum foil-supported nano-sized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation. Materials Research Bulletin, 2006, 41, 2123-2129.	2.7	113
41	Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. Journal of Catalysis, 2016, 335, 95-104.	3.1	110
42	Photoelectrochemical Characterization of Hydrogenated TiO ₂ Nanotubes as Photoanodes for Sensing Applications. ACS Applied Materials & Interfaces, 2013, 5, 11129-11135.	4.0	108
43	<i>Zinc Finger Protein5</i> Is Required for the Control of Trichome Initiation by Acting Upstream of <i>Zinc Finger Protein8</i> in Arabidopsis Â. Plant Physiology, 2011, 157, 673-682.	2.3	106
44	Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1073-1078.	1.7	105
45	Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation. Materials Research Bulletin, 2014, 56, 19-24.	2.7	104
46	Amorphous TiO ₂ @NH ₂ -MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity. Chemical Communications, 2018, 54, 1917-1920.	2.2	101
47	Elucidating Interaction between Palladium and N-Doped Carbon Nanotubes: Effect of Electronic Property on Activity for Nitrobenzene Hydrogenation. ACS Catalysis, 2019, 9, 2893-2901.	5.5	101
48	Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance. Applied Catalysis A: General, 2007, 321, 190-197.	2.2	100
49	"ln situ―XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surface Science, 2009, 603, 2825-2834.	0.8	100
50	Selective etching of gold nanorods by ferric chloride at room temperature. CrystEngComm, 2009, 11, 2797.	1.3	100
51	Microporous Cyanate Resins: Synthesis, Porous Structure, and Correlations with Gas and Vapor Adsorptions. Macromolecules, 2012, 45, 5140-5150.	2.2	98
52	Aerobic Liquidâ€Phase Oxidation of Ethylbenzene to Acetophenone Catalyzed by Carbon Nanotubes. ChemCatChem, 2013, 5, 1578-1586.	1.8	97
53	Effect of the metal foam materials on the performance of methanol steam micro-reformer for fuel cells. Applied Catalysis A: General, 2007, 327, 106-113.	2.2	96
54	Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter. Chemical Engineering Journal, 2014, 240, 434-442.	6.6	96

#	Article	IF	CITATIONS
55	Non-noble metal copper nanoparticles-decorated TiO 2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light. International Journal of Hydrogen Energy, 2015, 40, 303-310.	3.8	95
56	Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces. Journal of Materials Chemistry, 2012, 22, 23906.	6.7	91
57	<i><scp>GLABROUS INFLORESCENCE STEMS</scp>3</i> (<i><scp>GIS</scp>3</i>) regulates trichome initiation and development in <i>Arabidopsis</i> . New Phytologist, 2015, 206, 220-230.	3.5	90
58	AgI/TiO2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2015, 284, 207-214.	6.5	87
59	Synthesis of carbon nanotubes from liquefied petroleum gas containing sulfur. Carbon, 2002, 40, 2968-2970.	5.4	84
60	A bi-functional Co–CaO–Ca 12 Al 14 O 33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen. Chemical Engineering Journal, 2016, 286, 329-338.	6.6	81
61	Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chemical Engineering Journal, 2020, 381, 122605.	6.6	81
62	Introduction to the CDEX experiment. Frontiers of Physics, 2013, 8, 412-437.	2.4	80
63	Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catalysis Science and Technology, 2016, 6, 1007-1015.	2.1	80
64	Bifunctional CdS@Co ₉ S ₈ /Ni ₃ S ₂ catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2020, 8, 3083-3096.	5.2	78
65	Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes. Chemical Engineering Journal, 2012, 204-206, 98-106.	6.6	77
66	Novel silicon-doped, silicon and nitrogen-codoped carbon nanomaterials with high activity for the oxygen reduction reaction in alkaline medium. Journal of Materials Chemistry A, 2015, 3, 3289-3293.	5.2	77
67	ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chemical Engineering Journal, 2019, 362, 658-666.	6.6	76
68	High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochemistry Communications, 2014, 40, 24-27.	2.3	74
69	Engineering highly active Ag/Nb2O5@Nb2CT (MXene) photocatalysts via steering charge kinetics strategy. Chemical Engineering Journal, 2021, 421, 128766.	6.6	73
70	CdS@Ni ₃ S ₂ core–shell nanorod arrays on nickel foam: a multifunctional catalyst for efficient electrochemical catalytic, photoelectrochemical and photocatalytic H ₂ production reaction. Journal of Materials Chemistry A, 2019, 7, 2560-2574.	5.2	71
71	Efficient and stable oxidative steam reforming of ethanol for hydrogen production: Effect of in situ dispersion of Ir over Ir/La2O3. Journal of Catalysis, 2010, 269, 281-290.	3.1	70
72	Novel Highly Active Anatase/Rutile TiO ₂ Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen. ACS Sustainable Chemistry and Engineering, 2018, 6, 10823-10832.	3.2	69

#	Article	IF	CITATIONS
73	Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism. Journal of Energy Chemistry, 2020, 48, 308-321.	7.1	69
74	Revealing active-site structure of porous nitrogen-defected carbon nitride for highly effective photocatalytic hydrogen evolution. Chemical Engineering Journal, 2019, 373, 687-699.	6.6	68
75	Regulation of the rutile/anatase TiO2 phase junction in-situ grown on –OH terminated Ti3C2T (MXene) towards remarkably enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 439, 135685.	6.6	68
76	Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO ₂ gas, organic and water vapors. Polymer Chemistry, 2013, 4, 961-968.	1.9	67
77	A new insight into regulating high energy facets of rutile TiO2. Journal of Materials Chemistry A, 2013, 1, 4182.	5.2	67
78	MnO2-decorated N-doped carbon nanotube with boosted activity for low-temperature oxidation of formaldehyde. Journal of Hazardous Materials, 2020, 396, 122750.	6.5	66
79	Synthetic control of network topology and pore structure in microporous polyimides based on triangular triphenylbenzene and triphenylamine units. Soft Matter, 2011, 7, 5723.	1.2	65
80	Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells. Electrochemistry Communications, 2012, 16, 73-76.	2.3	65
81	The Evolution from a Typical Type-I CdS/ZnS to Type-II and Z-Scheme Hybrid Structure for Efficient and Stable Hydrogen Production under Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 4537-4546.	3.2	65
82	High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renewable Energy, 2012, 37, 192-196.	4.3	64
83	Morphology Effect of Ir/La ₂ O ₂ CO ₃ Nanorods with Selectively Exposed {110} Facets in Catalytic Steam Reforming of Glycerol. ACS Catalysis, 2015, 5, 1155-1163.	5.5	64
84	Electron-Rich Ruthenium on Nitrogen-Doped Carbons Promoting Levulinic Acid Hydrogenation to γ-Valerolactone: Effect of Metal–Support Interaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16501-16510.	3.2	64
85	Modeling of velocity distribution among microchannels with triangle manifolds. AICHE Journal, 2009, 55, 1969-1982.	1.8	63
86	ZnO nanorods/Ag nanoparticles heterostructures with tunable Ag contents: A facile solution-phase synthesis and applications in photocatalysis. CrystEngComm, 2013, 15, 5994.	1.3	62
87	Co3S4/NCNTs: A catalyst for oxygen evolution reaction. Catalysis Today, 2015, 245, 74-78.	2.2	62
88	Promoting role of bismuth on carbon nanotube supported platinum catalysts in aqueous phase aerobic oxidation of benzyl alcohol. Applied Catalysis B: Environmental, 2016, 181, 118-126.	10.8	62
89	Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Energy Chemistry, 2020, 44, 106-114.	7.1	62
90	Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells. Journal of Power Sources, 2014, 268, 171-175.	4.0	61

#	Article	IF	CITATIONS
91	A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO 2 with enhanced photocatalytic hydrogen production under solar light. International Journal of Hydrogen Energy, 2016, 41, 3446-3455.	3.8	61
92	A novel bicomponent Co ₃ S ₄ /Co@C cocatalyst on CdS, accelerating charge separation for highly efficient photocatalytic hydrogen evolution. Green Chemistry, 2020, 22, 238-247.	4.6	61
93	Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon, 2017, 115, 503-514.	5.4	60
94	Thermal stability of gold nanorods in an aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372, 177-181.	2.3	59
95	Crystal engineering and SERS properties of Ag–Fe3O4 nanohybrids: from heterodimer to core–shell nanostructures. Journal of Materials Chemistry, 2011, 21, 17930.	6.7	59
96	From chicken feather to nitrogen and sulfur co-doped large surface bio-carbon flocs: an efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2016, 213, 273-282.	2.6	59
97	Confined Iron Nanowires Enhance the Catalytic Activity of Carbon Nanotubes in the Aerobic Oxidation of Cyclohexane. ChemSusChem, 2012, 5, 1213-1217.	3.6	58
98	Co9S8-porous carbon spheres as bifunctional electrocatalysts with high activity and stability for oxygen reduction and evolution reactions. Electrochimica Acta, 2018, 265, 32-40.	2.6	58
99	Phosphorus doped Co9S8@CS as an excellent air-electrode catalyst for zinc-air batteries. Chemical Engineering Journal, 2020, 381, 122683.	6.6	58
100	Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. Journal of Energy Chemistry, 2022, 68, 721-751.	7.1	58
101	The role of RuO2 in the electrocatalytic oxidation of methanol for direct methanol fuel cell. Catalysis Communications, 2009, 10, 533-537.	1.6	57
102	Visible light active pure rutile TiO2 photoanodes with 100% exposed pyramid-shaped (111) surfaces. Nano Research, 2012, 5, 762-769.	5.8	57
103	Enhancing the catalytic activity of carbon nanotubes by nitrogen doping in the selective liquid phase oxidation of benzyl alcohol. Catalysis Communications, 2013, 39, 44-49.	1.6	56
104	The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction. Electrochemistry Communications, 2014, 40, 5-8.	2.3	55
105	Nitrogen-doped graphene-supported cobalt carbonitride@oxide core–shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1142-1151.	5.2	55
106	Synergistic Effect of Nitrogen Dopants on Carbon Nanotubes on the Catalytic Selective Epoxidation of Styrene. ACS Catalysis, 2020, 10, 129-137.	5.5	55
107	Understanding of nitrogen fixation electro catalyzed by molybdenum–iron carbide through the experiment and theory. Nano Energy, 2020, 68, 104374.	8.2	55
108	Carbon nanotubes as catalyst for the aerobic oxidation of cumene to cumene hydroperoxide. Applied Catalysis A: General, 2014, 478, 1-8.	2.2	54

#	Article	IF	CITATIONS
109	Mg-promoted Ni-CaO microsphere as bi-functional catalyst for hydrogen production from sorption-enhanced steam reforming of glycerol. Chemical Engineering Journal, 2020, 383, 123204.	6.6	53
110	The influence of the electrodeposition potential on the morphology of Cu2O/TiO2 nanotube arrays and their visible-light-driven photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 2013, 38, 13866-13871.	3.8	52
111	Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide. Chemical Communications, 2014, 50, 11238.	2.2	52
112	Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O2 reduction. Journal of Natural Gas Chemistry, 2012, 21, 257-264.	1.8	51
113	Electrodeposition of Cu2O/g-C3N4 heterojunction film on an FTO substrate for enhancing visible light photoelectrochemical water splitting. Chinese Journal of Catalysis, 2017, 38, 365-371.	6.9	51
114	Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2. Materials Research Bulletin, 2011, 46, 840-844.	2.7	50
115	Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B,N-doped TiO2. Journal of Solid State Chemistry, 2011, 184, 134-140.	1.4	50
116	Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: Effect of surface coverage. International Journal of Hydrogen Energy, 2019, 44, 29975-29985.	3.8	50
117	Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances. Electrochemistry Communications, 2011, 13, 121-124.	2.3	48
118	Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co N C. Journal of Catalysis, 2019, 377, 283-292.	3.1	48
119	Syngas production by dry reforming of the mixture of glycerol and ethanol with CaCO3. Journal of Energy Chemistry, 2020, 43, 90-97.	7.1	48
120	A simple preparation of nitrogen doped titanium dioxide nanocrystals with exposed (001) facets with high visible light activity. Chemical Communications, 2012, 48, 600-602.	2.2	46
121	sp2- and sp3-hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane. Catalysis Science and Technology, 2013, 3, 2654.	2.1	46
122	Cu(OH)2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 7241-7245.	3.8	46
123	Novel highly efficient alumina-supported cobalt nitride catalyst for preferential CO oxidation at high temperatures. International Journal of Hydrogen Energy, 2011, 36, 1955-1959.	3.8	45
124	Mechanistic Insight into the Catalytic Oxidation of Cyclohexane over Carbon Nanotubes: Kinetic and In Situ Spectroscopic Evidence. Chemistry - A European Journal, 2013, 19, 9818-9824.	1.7	44
125	Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media. Journal of Energy Chemistry, 2019, 34, 33-42.	7.1	44
126	Highly uniform and monodisperse carbon nanospheres enriched with cobalt–nitrogen active sites as a potential oxygen reduction electrocatalyst. Journal of Power Sources, 2017, 346, 80-88.	4.0	42

#	Article	IF	CITATIONS
127	Nickel Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanotubes as Excellent Bifunctional Oxygen Electrode for Fuel Cell and Metal–Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 15108-15118.	3.2	42
128	Electrocatalytic Oxidation of Small Molecule Alcohols over Pt, Pd, and Au Catalysts: The Effect of Alcohol's Hydrogen Bond Donation Ability and Molecular Structure Properties. Catalysts, 2019, 9, 387.	1.6	42
129	Selective oxidation of glycerol over supported noble metal catalysts. Catalysis Today, 2021, 365, 162-171.	2.2	42
130	Synthesis of Responsive Twoâ€Dimensional Polymers via Selfâ€Assembled DNA Networks. Angewandte Chemie - International Edition, 2017, 56, 5040-5044.	7.2	41
131	Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons. Carbon, 2018, 133, 464-473.	5.4	41
132	Highly efficient and acid-corrosion resistant nitrogen doped magnetic carbon nanotubes for the hexavalent chromium removal with subsequent reutilization. Chemical Engineering Journal, 2019, 361, 547-558.	6.6	41
133	CdS@Ni3S2 for efficient and stable photo-assisted electrochemical (P-EC) overall water splitting. Chemical Engineering Journal, 2021, 405, 126231.	6.6	41
134	Chemical Synthesis, Structural Characterization, Optical Properties, and Photocatalytic Activity of Ultrathin ZnSe Nanorods. Chemistry - A European Journal, 2011, 17, 8663-8670.	1.7	40
135	A kinetics study on cumene oxidation catalyzed by carbon nanotubes: Effect of N-doping. Chemical Engineering Science, 2018, 177, 391-398.	1.9	40
136	Revealing the Relationship between Photocatalytic Properties and Structure Characteristics of TiO ₂ Reduced by Hydrogen and Carbon Monoxide Treatment. ChemSusChem, 2018, 11, 2766-2775.	3.6	40
137	Zinc finger protein 5 (ZFP5) associates with ethylene signaling to regulate the phosphate and potassium deficiency-induced root hair development in Arabidopsis. Plant Molecular Biology, 2020, 102, 143-158.	2.0	39
138	Platinum-based ternary catalysts for the electrooxidation of ethanol. Particuology, 2021, 58, 169-186.	2.0	39
139	Tuning the Selectivity in the Aerobic Oxidation of Cumene Catalyzed by Nitrogenâ€Đoped Carbon Nanotubes. ChemCatChem, 2014, 6, 555-560.	1.8	38
140	Co-Cu-CaO catalysts for high-purity hydrogen from sorption-enhanced steam reforming of glycerol. Applied Catalysis A: General, 2017, 533, 9-16.	2.2	38
141	In-situ photo-deposition CuO1â^' cluster on TiO2 for enhanced photocatalytic H2-production activity. International Journal of Hydrogen Energy, 2017, 42, 19942-19950.	3.8	38
142	Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol. Energy and Environmental Science, 2018, 11, 660-668.	15.6	38
143	Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed. AICHE Journal, 2006, 52, 4110-4123.	1.8	37
144	Carbokatalyse in Flüssigphasenreaktionen. Angewandte Chemie, 2017, 129, 956-985.	1.6	37

#	Article	lF	CITATIONS
145	Phaseâ€Controllable Growth Ni <i>_x</i> P <i>_y</i> Modified CdS@Ni ₃ S ₂ Electrodes for Efficient Electrocatalytic and Enhanced Photoassisted Electrocatalytic Overall Water Splitting. Small Methods, 2021, 5, e2100878.	4.6	37
146	Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light driven H2 evolution. International Journal of Hydrogen Energy, 2017, 42, 928-937.	3.8	35
147	Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates. Chemical Engineering Journal, 2019, 360, 47-53.	6.6	35
148	Photoelectrochemical Characterization of a Robust TiO ₂ /BDD Heterojunction Electrode for Sensing Application in Aqueous Solutions. Langmuir, 2010, 26, 6033-6040.	1.6	34
149	Ni foams decorated with carbon nanotubes as catalytic stirrers for aerobic oxidation of cumene. Chemical Engineering Journal, 2016, 306, 806-815.	6.6	34
150	Catalytic applications of alkali-functionalized carbon nanospheres and their supported Pd nanoparticles. Applied Catalysis B: Environmental, 2016, 184, 104-118.	10.8	34
151	Chemically drilling carbon nanotubes for electrocatalytic oxygen reduction reaction. Electrochimica Acta, 2016, 190, 49-56.	2.6	34
152	Solvent effect on the allylic oxidation of cyclohexene catalyzed by nitrogen doped carbon nanotubes. Catalysis Communications, 2017, 88, 99-103.	1.6	34
153	Capacitance dependent catalytic activity of RuO2·xH2O/CNT nanocatalysts for aerobic oxidation of benzyl alcohol. Chemical Communications, 2009, , 2408.	2.2	33
154	Theoretical calculations and controllable synthesis of MoSe2/CdS-CdSe with highly active sites for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 383, 123133.	6.6	33
155	Enhanced methanol oxidation activity of Pt catalyst supported on the phosphorus-doped multiwalled carbon nanotubes in alkaline medium. Catalysis Communications, 2012, 22, 34-38.	1.6	32
156	Enhancing the catalytic activity of carbon nanotubes by filled iron nanowires for selective oxidation of ethylbenzene. Catalysis Communications, 2014, 51, 77-81.	1.6	32
157	Aerobic oxidation of α-pinene catalyzed by carbon nanotubes. Catalysis Science and Technology, 2015, 5, 3935-3944.	2.1	32
158	Mn ₃ O ₄ @C Nanoparticles Supported on Porous Carbon as Bifunctional Oxygen Electrodes and their Electrocatalytic Mechanism. ChemElectroChem, 2019, 6, 359-368.	1.7	32
159	The zinc vacancy induced CdS/ZnS Z-scheme structure as a highly stable photocatalyst for hydrogen production. Journal of Alloys and Compounds, 2021, 888, 161620.	2.8	32
160	Design, synthesis and the electrochemical performance of MnO2/C@CNT as supercapacitor material. Materials Research Bulletin, 2013, 48, 3389-3393.	2.7	31
161	Mesoporous MgO nanosheets: 1,6-hexanediamin-assisted synthesis and their applications on electrochemical detection of toxic metal ions. Journal of Physics and Chemistry of Solids, 2013, 74, 1032-1038.	1.9	31
162	ZnO nanorods/Pt and ZnO nanorods/Ag heteronanostructure arrays with enhanced photocatalytic degradation of dyes. RSC Advances, 2014, 4, 59009-59016.	1.7	31

#	Article	IF	CITATIONS
163	Preparation of boron and phosphor co-doped TiO2 nanotube arrays and their photoelectrochemical property. Electrochemistry Communications, 2012, 19, 127-130.	2.3	29
164	Preparation of Bi2Ti2O7/TiO2 nanocomposites and their photocatalytic performance under visible light irradiation. Materials and Design, 2015, 86, 152-155.	3.3	29
165	NbGIS regulates glandular trichome initiation through GA signaling in tobacco. Plant Molecular Biology, 2018, 98, 153-167.	2.0	29
166	Formation of Lattice-Dislocated Zinc Oxide via Anodic Corrosion for Electrocatalytic CO ₂ Reduction to Syngas with a Potential-Dependent CO:H ₂ Ratio. ACS Applied Materials & Interfaces, 2020, 12, 30466-30473.	4.0	29
167	Controlled preparation of Ag–Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light. Materials Research Bulletin, 2015, 70, 296-302.	2.7	28
168	Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2020, 13, 5041-5049.	3.6	28
169	Biomass-Derived Nitrogen-Doped Porous Carbons Activated by Magnesium Chloride as Ultrahigh-Performance Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 21756-21767.	1.8	28
170	Hydrogen Production from Sorption-Enhanced Steam Reforming of Phenol over a Ni–Ca–Al–O Bifunctional Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 7111-7120.	3.2	28
171	One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions. Applied Catalysis B: Environmental, 2022, 303, 120910.	10.8	28
172	Micro―and Mesoporous Polycyanurate Networks Based on Triangular Units. ChemPlusChem, 2013, 78, 498-505.	1.3	27
173	Fabrication of uniformly dispersed Ag nanoparticles loaded TiO 2 nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation. Materials Research Bulletin, 2014, 60, 130-136.	2.7	27
174	Si-doped carbon nanotubes as efficient metal-free electrocatalysts for O2 reduction in alkaline medium. Materials Letters, 2015, 158, 32-35.	1.3	27
175	Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells. Electrochimica Acta, 2015, 185, 178-183.	2.6	27
176	Branched hydrogenated TiO 2 nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light. International Journal of Hydrogen Energy, 2016, 41, 20192-20197.	3.8	27
177	Effect of calcium dopant on catalysis of Ir/La2O3 for hydrogen production by oxidative steam reforming of glycerol. Applied Catalysis B: Environmental, 2012, 127, 89-98.	10.8	26
178	Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Mikrochimica Acta, 2015, 182, 157-165.	2.5	26
179	Controllable Preparation of Holey Graphene and Electrocatalytic Performance for Oxygen Reduction Reaction. Electrochimica Acta, 2017, 228, 203-213.	2.6	26
180	Sorption-enhanced steam reforming of glycerol over Ni Cu Ca Al catalysts for producing fuel-cell grade hydrogen. International Journal of Hydrogen Energy, 2017, 42, 17446-17456.	3.8	26

#	Article	IF	CITATIONS
181	Design of cocatalyst loading position for photocatalytic water splitting into hydrogen in electrolyte solutions. International Journal of Hydrogen Energy, 2018, 43, 5551-5560.	3.8	26
182	Preparation of CdS-CoSx photocatalysts and their photocatalytic and photoelectrochemical characteristics for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 27795-27805.	3.8	26
183	Preparation of Cobalt Oxide Nanoclusters/Overoxidized Polypyrrole Composite Film Modified Electrode and Its Application in Nonenzymatic Glucose Sensing. Electroanalysis, 2013, 25, 1665-1674.	1.5	25
184	Heterostructured CoO/3D-TiO2 nanorod arrays for photoelectrochemical water splitting hydrogen production. Journal of Solid State Electrochemistry, 2017, 21, 455-461.	1.2	25
185	Rapid electrochemical preparation of a compact and thick Prussian blue film on composite ceramic carbon electrode from single ferricyanide solution in the presence of HAuCl4. Journal of Electroanalytical Chemistry, 2007, 606, 55-62.	1.9	24
186	Boron and nitrogen-codoped TiO2 nanorods: Synthesis, characterization, and photoelectrochemical properties. Journal of Solid State Chemistry, 2011, 184, 3002-3007.	1.4	24
187	Synthesis of High Generation Dendronized Polymers and Quantification of Their Structure Perfection. Macromolecules, 2014, 47, 4127-4135.	2.2	24
188	Enhancing the photocatalytic efficiency of TiO 2 nanotube arrays for H 2 production by using non-noble metal cobalt as co-catalyst. Materials Letters, 2016, 165, 37-40.	1.3	24
189	New route of fabricating BiOI and Bi 2 O 3 supported TiO 2 nanotube arrays via the electrodeposition of bismuth nanoparticles for photocatalytic degradation of acid orange II. Materials Chemistry and Physics, 2017, 196, 237-244.	2.0	24
190	Modifying carbon nanotubes supported palladium nanoparticles via regulating the electronic metal–carbon interaction for phenol hydrogenation. Chemical Engineering Journal, 2022, 436, 131758.	6.6	24
191	Nanostructured Organicâ ``Inorganic Copolymer Networks Based on Polymethacrylate-Functionalized Octaphenylsilsesquioxane and Methyl Methacrylate: Synthesis and Characterization. Macromolecules, 2011, 44, 566-574.	2.2	23
192	Structural stability and mutual transformations of molybdenum carbide, nitride and phosphide. Materials Research Bulletin, 2011, 46, 1938-1941.	2.7	23
193	Nanocrystal Cu2O-loaded TiO2 nanotube array films as high-performance visible-light bactericidal photocatalyst. Applied Microbiology and Biotechnology, 2012, 96, 1201-1207.	1.7	23
194	Preparation of hybrid cobalt–iron hexacyanoferrate nanoparticles modified multi-walled carbon nanotubes composite electrode and its application. Journal of Electroanalytical Chemistry, 2013, 700, 47-53.	1.9	23
195	Effect of the surface roughness of copper substrate on three-dimensional tin electrode for electrochemical reduction of CO2 into HCOOH. Journal of CO2 Utilization, 2017, 21, 219-223.	3.3	23
196	Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst. Applied Surface Science, 2018, 434, 534-539.	3.1	23
197	Pd-promoted Ni-Ca-Al bi-functional catalyst for integrated sorption-enhanced steam reforming of glycerol and methane reforming of carbonate. Chemical Engineering Science, 2021, 230, 116226.	1.9	23
198	Synthesis and fluorescence properties of novel 1,10â€phenanthrolineâ€functionalized polyaryletherketone and its rare earth complexes. Polymer International, 2010, 59, 937-944.	1.6	22

#	Article	IF	CITATIONS
199	O ₂ and H ₂ O ₂ transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 21950-21959.	1.3	22
200	Comparatively Thermal and Crystalline Study of Poly(methylâ€methacrylate)/Polyacrylonitrile Hybrids: Core–Shell Hollow Fibers, Porous Fibers, and Thin Films. Macromolecular Materials and Engineering, 2016, 301, 1327-1336.	1.7	22
201	Trace amounts of Cu(OAc) ₂ boost the efficiency of cumene oxidation catalyzed by carbon nanotubes washed with HCl. Catalysis Science and Technology, 2020, 10, 2523-2530.	2.1	22
202	Synthesis of Dendronized Polymers by a "n+ 2―Approach. Macromolecules, 2012, 45, 8555-8560.	2.2	21
203	Synthetic regimes due to packing constraints in dendritic molecules confirmed by labelling experiments. Nature Communications, 2013, 4, 1993.	5.8	21
204	Trace iron impurities deactivate palladium supported on nitrogen-doped carbon nanotubes for nitrobenzene hydrogenation. Applied Catalysis A: General, 2017, 545, 54-63.	2.2	21
205	Facile Synthesis of Cobalt and Nitrogen Coordinated Carbon Nanotube as a High-Performance Electrocatalyst for Oxygen Reduction Reaction in Both Acidic and Alkaline Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 10951-10961.	3.2	21
206	Highly exposed (001) facets Ni(OH)2 induced formation of nickle phosphide over cadmium sulfide nanorods for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 9397-9407.	3.8	21
207	Intrinsic acid resistance and high removal performance from the incorporation of nickel nanoparticles into nitrogen doped tubular carbons for environmental remediation. Journal of Colloid and Interface Science, 2020, 566, 46-59.	5.0	21
208	Essential analysis of cyclic voltammetry of methanol electrooxidation using the differential electrochemical mass spectrometry. Journal of Power Sources, 2021, 509, 230397.	4.0	21
209	Chemical Synthesis, Structure Characterization, and Optical Properties of Hollow PbS _{<i>x</i>} –Solid Au Heterodimer Nanostructures. Chemistry - A European Journal, 2010, 16, 5920-5926.	1.7	20
210	Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by electrochemical deposition. Materials Chemistry and Physics, 2011, 130, 316-322.	2.0	20
211	An opposite change rule in carbon nanotubes supported platinum catalyst for methanol oxidation and oxygen reduction reactions. Journal of Power Sources, 2014, 260, 1-5.	4.0	20
212	CdS urchin-like microspheres/α-Fe2O3 and CdS/Fe3O4 nanoparticles heterostructures with improved photocatalytic recycled activities. Journal of Colloid and Interface Science, 2014, 426, 83-89.	5.0	20
213	Facile and scalable synthesis of coal tar-derived, nitrogen and sulfur-codoped carbon nanotubes with superior activity for O ₂ reduction by employing an evocating agent. Journal of Materials Chemistry A, 2015, 3, 22723-22729.	5.2	20
214	Visible light photoelectrochemical properties of a hydrogenated TiO ₂ nanorod film and its application in the detection of chemical oxygen demand. RSC Advances, 2015, 5, 76315-76320.	1.7	20
215	MoS2 supported on hydrogenated TiO2 heterostructure film as photocathode for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 31008-31019.	3.8	20
216	Chlorineâ€Promoted Nitrogen and Sulfur Coâ€Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction. ChemElectroChem, 2020, 7, 320-327.	1.7	20

#	Article	IF	CITATIONS
217	New Understanding of Selective Aerobic Oxidation of Ethylbenzene Catalyzed by Nitrogenâ€doped Carbon Nanotubes. ChemCatChem, 2021, 13, 646-655.	1.8	20
218	Photocatalysis over MXene-based hybrids: Synthesis, surface chemistry, and interfacial charge kinetics. APL Materials, 2021, 9, .	2.2	20
219	Understanding the Catalytic Sites in Porous Hexagonal Boron Nitride for the Epoxidation of Styrene. ACS Catalysis, 2021, 11, 8872-8880.	5.5	20
220	Synthesis of Responsive Twoâ€Dimensional Polymers via Selfâ€Assembled DNA Networks. Angewandte Chemie, 2017, 129, 5122-5126.	1.6	19
221	Design of two kinds of branched TiO2 nano array photoanodes and their comparison of photoelectrochemical performances. Electrochimica Acta, 2017, 252, 368-373.	2.6	19
222	Deactivation and regeneration of <i>in situ</i> formed bismuth-promoted platinum catalyst for the selective oxidation of glycerol to dihydroxyacetone. New Journal of Chemistry, 2018, 42, 18837-18843.	1.4	19
223	Preparation of Ag-sensitized ZnO and its photocatalytic performance under simulated solar light. Korean Journal of Chemical Engineering, 2007, 24, 1022-1026.	1.2	18
224	Hydrogen permeability of Pd–Ag membrane modules with porous stainless steel substrates. International Journal of Hydrogen Energy, 2011, 36, 1014-1026.	3.8	18
225	Pt/IrO2/CNT anode catalyst with high performance for direct methanol fuel cells. Catalysis Communications, 2013, 33, 34-37.	1.6	18
226	Solution growth of peony-like copper hydroxyl-phosphate (Cu 2 (OH)PO 4) flowers on Cu foil and their photocatalytic activity under visible light. Materials and Design, 2016, 100, 30-36.	3.3	18
227	Iron based dual-metal oxides on graphene for lithium-ion batteries anode: Effects of composition and morphology. Journal of Alloys and Compounds, 2016, 684, 47-54.	2.8	18
228	Unravelling the radical transition during the carbon-catalyzed oxidation of cyclohexane by in situ electron paramagnetic resonance in the liquid phase. Catalysis Science and Technology, 2017, 7, 4431-4436.	2.1	18
229	Cobalt and cobalt oxide supported on nitrogen-doped porous carbon as electrode materials for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 3649-3657.	3.8	18
230	Unraveling the intrinsic enhancement of fluorine doping in the dual-doped magnetic carbon adsorbent for the environmental remediation. Journal of Colloid and Interface Science, 2019, 538, 327-339.	5.0	18
231	A novel carbothermal reduction nitridation route to MoN nanoparticles on CNTs support. Journal of Materials Chemistry, 2011, 21, 6898.	6.7	17
232	Design of Pt catalyst with high electrocatalytic activity and well tolerance to methanol for oxygen reduction in acidic medium. Catalysis Communications, 2012, 29, 11-14.	1.6	17
233	Steering interfacial charge kinetics: Synergizing cocatalyst roles of Ti3C2M (MXene) and NCDs for superior photocatalytic performance over TiO2. Applied Surface Science, 2022, 599, 154001.	3.1	17
234	Hydrogenated CdS nanorods arrays/FTO film: A highly stable photocatalyst for photocatalytic H2 production. International Journal of Hydrogen Energy, 2018, 43, 17696-17707.	3.8	16

#	Article	IF	CITATIONS
235	Selective Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde by Nitrates. Frontiers in Chemistry, 2020, 8, 151.	1.8	16
236	Low Pt content catalyst supported on nitrogen and phosphorus-codoped carbon nanotubes for electrocatalytic O2 reaction in acidic medium. Materials Letters, 2015, 142, 115-118.	1.3	15
237	Highly selective gas-phase oxidation of ethanol to ethyl acetate over bi-functional Pd/zeolite catalysts. Green Chemistry, 2016, 18, 3048-3056.	4.6	15
238	The effect of surface oxygenated groups of carbon nanotubes on liquid phase catalytic oxidation of cumene. Catalysis Science and Technology, 2016, 6, 2396-2402.	2.1	15
239	Dual Functional CuO _{1–<i>x</i>} Clusters for Enhanced Photocatalytic Activity and Stability of a Pt Cocatalyst in an Overall Water-Splitting Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 17340-17351.	3.2	15
240	A Review of Carbon-based Non-noble Catalysts for Oxygen Reduction Reaction. Acta Chimica Sinica, 2017, 75, 943.	0.5	15
241	PtRu Catalysts on Nitrogen-Doped Carbon Nanotubes with Conformal Hydrogenated TiO ₂ Shells for Methanol Oxidation. ACS Applied Nano Materials, 2022, 5, 3275-3288.	2.4	15
242	Facile synthesis of porous hollow iron oxide nanoparticles supported on carbon nanotubes. Materials Letters, 2012, 67, 245-247.	1.3	14
243	Enhanced Activity and Durability of Nanosized Pt–SnO ₂ /IrO ₂ /CNTs Catalyst for Methanol Electrooxidation. Journal of Nanoscience and Nanotechnology, 2015, 15, 3662-3669.	0.9	14
244	Solution-phase synthesis of 1D tubular polymers via preorganization–polymerization. Chemical Communications, 2016, 52, 14396-14399.	2.2	14
245	Bi-functional particles for integrated thermo-chemical processes: Catalysis and beyond. Particuology, 2021, 56, 10-32.	2.0	14
246	Preparation, Electrochemical Behavior and Electrocatalytic Activity of a Copper Hexacyanoferrate Modified Ceramic Carbon Electrode. Chinese Journal of Chemistry, 2007, 25, 503-509.	2.6	13
247	Effects of RuO2 Content in Pt/RuO2/CNTs Nanocatalyst on the Electrocatalytic Oxidation Performance of Methanol. Chinese Journal of Catalysis, 2008, 29, 1093-1098.	6.9	13
248	Metal-Foam-Supported Pd/Al2O3 Catalysts for Catalytic Combustion of Methane: Effect of Interaction between Support and Catalyst. International Journal of Chemical Reactor Engineering, 2015, 13, 83-93.	0.6	13
249	Preparation and the Electrochemical Performance of MnO ₂ /PANI@CNT Composite for Supercapacitors. Journal of Nanoscience and Nanotechnology, 2015, 15, 709-714.	0.9	13
250	Superoxide Decay Pathways in Oxygen Reduction Reaction on Carbonâ€Based Catalysts Evidenced by Theoretical Calculations. ChemSusChem, 2019, 12, 1133-1138.	3.6	13
251	Reaction/separation coupled equilibrium modeling of steam methane reforming in fluidized bed membrane reactors. International Journal of Hydrogen Energy, 2010, 35, 11798-11809.	3.8	12
252	Mainâ€Chain Scission of a Charged Fifthâ€Generation Dendronized Polymer. Helvetica Chimica Acta, 2012, 95, 2399-2410.	1.0	12

#	Article	IF	CITATIONS
253	Polarized Micropores in a Novel 3D Metal–Organic Framework for Selective Adsorption Properties. Inorganic Chemistry, 2012, 51, 5022-5025.	1.9	12
254	Magnetic epoxy nanocomposites with superparamagnetic MnFe2O4 nanoparticles. AIP Advances, 2015, 5,	0.6	12
255	Co–N–C-Supported Platinum Catalyst: Synergistic Effect on the Aerobic Oxidation of Glycerol. ACS Sustainable Chemistry and Engineering, 2020, 8, 19062-19071.	3.2	12
256	A facile one-step preparation of hierarchically-structured TiO2 nanotube array photoanodes with enhanced photocatalytic activity. Electrochemistry Communications, 2011, 13, 1151-1154.	2.3	11
257	α-Nickel hydroxide 3D hierarchical architectures: Controlled synthesis and their applications on electrochemical determination of H2O2. Materials Research Bulletin, 2013, 48, 2340-2346.	2.7	11
258	3D Conformations of Thick Synthetic Polymer Chains Observed by Cryogenic Electron Microscopy. ACS Nano, 2019, 13, 3466-3473.	7.3	11
259	Morphology effect of ZnO support on the performance of Cu toward methanol production from CO2 hydrogenation. Journal of Saudi Chemical Society, 2020, 24, 42-51.	2.4	11
260	Surface-structure sensitive chemical diffusivity and reactivity of CO adsorbates on noble metal electrocatalysts. Applied Catalysis B: Environmental, 2021, 281, 119522.	10.8	11
261	High-purity hydrogen production by sorption-enhanced steam reforming of iso-octane over a Pd-promoted Ni-Ca-Al-O bi-functional catalyst. Fuel, 2021, 293, 120430.	3.4	11
262	Inhibitory effect of Zn ²⁺ on the chainâ€initiation process of cumene oxidation. International Journal of Quantum Chemistry, 2021, 121, e26780.	1.0	11
263	Pt/MoO3-WO3/CNTs catalyst with excellent performance for methanol electrooxidation. Chinese Journal of Catalysis, 2014, 35, 1687-1694.	6.9	10
264	Facile synthesis of self-assembled mesoporous CuO nanospheres and hollow Cu ₂ O microspheres with excellent adsorption performance. RSC Advances, 2014, 4, 43024-43028.	1.7	10
265	Enhanced Catalytic Activity of Carbon Nanotubes for the Oxidation of Cyclohexane by Filling with Fe, Ni, and FeNi alloy Nanowires. Australian Journal of Chemistry, 2016, 69, 689.	0.5	10
266	Synthesis and Characterization of Novel N-doped TiO2 Photocatalyst with Visible Light Active. Chinese Journal of Chemical Physics, 2010, 23, 437-441.	0.6	9
267	Controlled network structure and its correlations with physical properties of polycarboxyl octaphenylsilsesquioxanes-based inorganic–organic polymer nanocomposites. RSC Advances, 2012, 2, 2759.	1.7	9
268	Electrochemical preparation of cobalt hexacyanoferrate nanoparticles under the synergic action of EDTA and overoxidized polypyrrole film. Electrochimica Acta, 2012, 85, 650-658.	2.6	9
269	Development of a distributed artificial fish swarm algorithm to optimize pumps working in parallel mode. Science and Technology for the Built Environment, 2018, 24, 248-258.	0.8	9
270	Production of high-purity hydrogen from paper recycling black liquor via sorption enhanced steam reforming. Green Energy and Environment, 2021, 6, 771-779.	4.7	9

#	Article	IF	CITATIONS
271	Ni Foam Supported TiO ₂ Nanorod Arrays with CdS Branches: Type II and Zâ€5cheme Mechanisms Coexisted Monolithic Catalyst Film for Improved Photocatalytic H ₂ Production. Solar Rrl, 2022, 6, .	3.1	9
272	Electrochemical preparation of copper hexacyanoferrate nanoparticles under the synergic action of EDTA and HAuCl4. Journal of Electroanalytical Chemistry, 2010, 650, 82-89.	1.9	8
273	Confined Cobalt on Carbon Nanotubes in Solventâ€free Aerobic Oxidation of Ethylbenzene: Enhanced Interfacial Charge Transfer. ChemCatChem, 2022, 14, .	1.8	7
274	Application of electrochemical methods in heterogeneous catalysis. Current Opinion in Chemical Engineering, 2019, 26, 88-95.	3.8	6
275	Solvent-Free Production of Îμ-Caprolactone from Oxidation of Cyclohexanone Catalyzed by Nitrogen-Doped Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2022, 61, 2037-2044.	1.8	6
276	Synthesis and fluorescence properties of dysprosiumâ€coordinated with highâ€T _g polyaryletherketones containing carboxyl side groups. Polymers for Advanced Technologies, 2011, 22, 488-494.	1.6	5
277	Photoelectrochemical detection of ultra-trace fluorine ion using TiO ₂ nanorod arrays as a probe. RSC Advances, 2019, 9, 26712-26717.	1.7	5
278	Modulating the electronic property of Pt nanocatalyst on rGO by iron oxides for aerobic oxidation of glycerol. Catalysis Communications, 2020, 144, 106073.	1.6	5
279	Syntheses, structures and chemical sensing properties of three complexes with mixed ligands of carboxylate and bipyridine. Dalton Transactions, 2013, 42, 1346-1351.	1.6	4
280	Mechanistic Insights into Cyclic Voltammograms on Pt(111): Kinetics Simulations. ChemPhysChem, 2019, 20, 2791-2798.	1.0	4
281	<scp>Ru_xBi_{1â€x}</scp> â€oxide as an electrode material for pseudocapacitors. Canadian Journal of Chemical Engineering, 2022, 100, 2872-2880.	0.9	4
282	Catalytic Synthesis of Lactones from Alkanes in the Presence of Aldehydes and Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2022, 10, 6713-6723.	3.2	4
283	Synthesis and Catalytic Properties of Carbon-Nanotube-Supported RuO2 Catalyst Encapsulated in Silica Coating. Catalysis Letters, 2012, 142, 100-107.	1.4	3
284	Highly Enhanced Methanol Electrooxidation on Pt/Nâ^'CNTâ€Đecorated FeP**. ChemElectroChem, 2021, 8, 2442-2448.	1.7	3
285	Perovskite-Based Phase Transition Sorbents for Sorption-Enhanced Oxidative Steam Reforming of Glycerol. ACS Sustainable Chemistry and Engineering, 2022, 10, 6434-6445.	3.2	3
286	MWNTs Modified Glassy Carbon Biosensor for Glucose. , 2006, , .		2
287	Performance of Fast Thermally Reduced Graphene Oxide for Supercapacitor. Advanced Materials Research, 0, 785-786, 783-786.	0.3	2
288	Formation of Supramolecular Nanotubes by Selfâ€assembly of a Phosphateâ€linked Dimeric Anthracene in Water. Chemistry - an Asian Journal, 2018, 13, 968-971.	1.7	2

HAO YU

#	Article	IF	CITATIONS
289	<scp>Pt–calcium</scp> cobaltate enables sorptionâ€enhanced steam reforming of glycerol coupled with chemicalâ€looping <scp>CH₄</scp> combustion. AICHE Journal, 2021, 67, e17383.	1.8	2
290	Radical Propagation Facilitating Aerobic Oxidation of Substituted Aromatics Promoted by Tertâ€Butyl Hydroperoxide. ChemistrySelect, 2021, 6, 6895-6903.	0.7	2
291	Ce <i>_x</i> Ni _{0.5} La _{0.5-<i>x</i>} O Catalysts for Hydrogen Production by Oxidative Steam Reforming of Glycerol: Influence of the Ce-to-La Ratio. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1527-1533.	2.2	2
292	Controllable Surfactantâ€free Synthesis of Colloidal Platinum Nanocuboids Enabled by Bromide Ions and Carbon Monoxide. ChemElectroChem, 2022, 9, .	1.7	2
293	Non-Metal Doped Pd/CNTs Catalysts for Oxygen Reduction Reaction in Alkaline Medium. Advanced Materials Research, 0, 550-553, 238-242.	0.3	1
294	Speciation Analysis of Heavy Metals in Sludge from a Wastewater Treatment Plant. Applied Mechanics and Materials, 0, 448-453, 376-379.	0.2	1
295	Facile Synthesis and Performance of Reduced Graphene Oxide/Cobalt Oxide Composite for Supercapacitor. Advanced Materials Research, 0, 785-786, 779-782.	0.3	1
296	Degradation of Typical Indoor Air Pollutants Using Fe-Doped TiO ₂ Thin Film under Daylight Illumination. Journal of Chemistry, 2014, 2014, 1-5.	0.9	1
297	Exploring the Loading Capacity of Generation Six to Eight Dendronized Polymers in Aqueous Solution. ChemPhysChem, 2016, 17, 2767-2772.	1.0	1
298	A distribute and self-tuning wireless environment monitoring system for buildings based on the Wi-Fi Direct technology. Science and Technology for the Built Environment, 2018, 24, 22-32.	0.8	1
299	Development of a self-organized network to optimize the data transmission in BECMP based on minimum spanning tree algorithm. Building Simulation, 2019, 12, 535-545.	3.0	1
300	Editorial: Carbon Catalysis: Focus on Sustainable Chemical Technology. Frontiers in Chemistry, 2020, 8, 308.	1.8	1
301	Configuration Sensitivity of Electrocatalytic Oxygen Reduction Reaction on Nitrogen-Doped Graphene. Journal of Physical Chemistry Letters, 2022, 13, 6187-6193.	2.1	1
302	Degradation of Indoor Ammonia Using TiO ₂ Thin Film Doped with Iron(III) under Visible Light Illumination. Advanced Materials Research, 2013, 668, 136-139.	0.3	0
303	Can one determine the density of an individual synthetic macromolecule?. Soft Matter, 2019, 15, 6547-6556.	1.2	0