Eline M Hutter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046888/publications.pdf Version: 2024-02-01

FLINE M HUTTED

#	Article	IF	CITATIONS
1	Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555, 497-501.	27.8	1,336
2	Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy and Environmental Science, 2016, 9, 3456-3463.	30.8	410
3	Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Materials, 2017, 16, 115-120.	27.5	369
4	Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals. Joule, 2017, 1, 155-167.	24.0	264
5	Charge Carriers in Planar and Meso-Structured Organic–Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States. Journal of Physical Chemistry Letters, 2015, 6, 3082-3090.	4.6	257
6	Charge Carrier Lifetimes Exceeding 15 μs in Methylammonium Lead Iodide Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 923-928.	4.6	226
7	Understanding the Role of Cesium and Rubidium Additives in Perovskite Solar Cells: Trap States, Charge Transport, and Recombination. Advanced Energy Materials, 2018, 8, 1703057.	19.5	184
8	Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fillâ€Factor Solar Cells. Advanced Materials, 2016, 28, 9839-9845.	21.0	150
9	Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance. ACS Energy Letters, 2017, 2, 1901-1908.	17.4	128
10	Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 26566-26574.	3.1	123
11	Particle Shape Anisotropy in Pickering Emulsions: Cubes and Peanuts. Langmuir, 2014, 30, 955-964.	3.5	119
12	Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers. Journal of the American Chemical Society, 2015, 137, 16043-16048.	13.7	101
13	Charge Transfer from Methylammonium Lead Iodide Perovskite to Organic Transport Materials: Efficiencies, Transfer Rates, and Interfacial Recombination. Advanced Energy Materials, 2017, 7, 1602349.	19.5	101
14	Lattice Compression Increases the Activation Barrier for Phase Segregation in Mixed-Halide Perovskites. ACS Energy Letters, 2020, 5, 3152-3158.	17.4	90
15	Band-Like Charge Transport in Cs ₂ AgBiBr ₆ and Mixed Antimony–Bismuth Cs ₂ AgBi _{1–<i>x</i>} Sb _{<i>x</i>} Br ₆ Halide Double Perovskites. ACS Omega, 2018, 3, 11655-11662.	3.5	84
16	Crystal Orientation and Grain Size: Do They Determine Optoelectronic Properties of MAPbI ₃ Perovskite?. Journal of Physical Chemistry Letters, 2019, 10, 6010-6018.	4.6	82
17	New Generation Hole Transporting Materials for Perovskite Solar Cells: Amideâ€Based Smallâ€Molecules with Nonconjugated Backbones. Advanced Energy Materials, 2018, 8, 1801605.	19.5	78
18	The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskites. Advanced Materials, 2016, 28, 10757-10763.	21.0	65

Eline M Hutter

#	Article	IF	CITATIONS
19	Thermodynamic Stabilization of Mixed-Halide Perovskites against Phase Segregation. Cell Reports Physical Science, 2020, 1, 100120.	5.6	56
20	Halide Double-Perovskite Semiconductors beyond Photovoltaics. ACS Energy Letters, 2022, 7, 2128-2135.	17.4	54
21	Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics. Nature Reviews Chemistry, 2021, 5, 370-387.	30.2	47
22	Conformal and Atomic Characterization of Ultrathin CdSe Platelets with a Helical Shape. Nano Letters, 2014, 14, 6257-6262.	9.1	46
23	Photoluminescence from Radiative Surface States and Excitons in Methylammonium Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 4258-4263.	4.6	46
24	Quantifying Chargeâ€Carrier Mobilities and Recombination Rates in Metal Halide Perovskites from Timeâ€Resolved Microwave Photoconductivity Measurements. Advanced Energy Materials, 2020, 10, 1903788.	19.5	43
25	Charge Carrier Dynamics upon Sub-bandgap Excitation in Methylammonium Lead Iodide Thin Films: Effects of Urbach Tail, Deep Defects, and Two-Photon Absorption. ACS Energy Letters, 2020, 5, 3821-3827.	17.4	37
26	Thermally Activated Second-Order Recombination Hints toward Indirect Recombination in Fully Inorganic CsPbI ₃ Perovskites. ACS Energy Letters, 2018, 3, 2068-2069.	17.4	30
27	Single Trap States in Single CdSe Nanoplatelets. ACS Nano, 2021, 15, 7216-7225.	14.6	30
28	Pitfalls and prospects of optical spectroscopy to characterize perovskite-transport layer interfaces. Applied Physics Letters, 2020, 116, .	3.3	28
29	Metal halide perovskite toxicity effects on Arabidopsis thaliana plants are caused by iodide ions. IScience, 2022, 25, 103583.	4.1	23
30	Routes toward Long-Term Stability of Mixed-Halide Perovskites. Matter, 2020, 2, 800-802.	10.0	20
31	Comparing the Calculated Fermi Level Splitting with the Open-Circuit Voltage in Various Perovskite Cells. ACS Energy Letters, 2019, 4, 855-860.	17.4	19
32	Method To Incorporate Anisotropic Semiconductor Nanocrystals of All Shapes in an Ultrathin and Uniform Silica Shell. Chemistry of Materials, 2014, 26, 1905-1911.	6.7	17
33	Charge Carriers Are Not Affected by the Relatively Slow-Rotating Methylammonium Cations in Lead Halide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2019, 10, 5128-5134.	4.6	16
34	Reduced Barrier for Ion Migration in Mixed-Halide Perovskites. ACS Applied Energy Materials, 2021, 4, 13431-13437.	5.1	16
35	Recombination and localization: Unfolding the pathways behind conductivity losses in Cs2AgBiBr6 thin films. Applied Physics Letters, 2021, 119, .	3.3	10
36	The Complicated Morality of Named Inventions. ACS Energy Letters, 2021, 6, 565-567.	17.4	9

Eline M Hutter

#	Article	IF	CITATIONS
37	Accelerated Hot-Carrier Cooling in MAPbl ₃ Perovskite by Pressure-Induced Lattice Compression. Journal of Physical Chemistry Letters, 2021, 12, 4118-4124.	4.6	8
38	Mechanistic Insights into the Lanthanide-Catalyzed Oxychlorination of Methane as Revealed by Operando Spectroscopy. ACS Catalysis, 2021, 11, 10574-10588.	11.2	8
39	Favoring the Methane Oxychlorination Reaction over EuOCl by Synergistic Effects with Lanthanum. ACS Catalysis, 2022, 12, 5698-5710.	11.2	5
40	Morphological and chemical transformations of single silica-coated CdSe/CdS nanorods upon fs-laser excitation. Nanoscale, 2017, 9, 4810-4818.	5.6	4
41	Scalable ways to break the efficiency limit of single-junction solar cells. Applied Physics Letters, 2022, 120, .	3.3	4
42	Time-Resolved Photoconductivity Measurements on Organometal Halide Perovskites. Series on Chemistry, Energy and the Environment, 2017, , 179-232.	0.3	1
43	Perovskite escape room: Which photons leave the film, and which are trapped inside?. CheM, 2021, 7, 845-846.	11.7	1
44	Accelerated Hot-Carrier Cooling in MAPbI3 Perovskite by Pressure-Induced Lattice Compression. , 0, , .		0
45	Effect of the organic cation on 2D organic-inorganic Perovskites. , 0, , .		0
46	Crystal Orientation and Grain Size: Do They Matter for Optoelectronic Properties of MAPbI3 Perovskite?. , 0, , .		0
47	Crystal Orientation and Grain Size: Do They Matter for Optoelectronic Properties of MAPbI3 Perovskite?. , 0, , .		Ο