
Francisco de Azambuja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co(III)-Catalyzed C–H Activation/Formal S _N -Type Reactions: Selective and Efficient Cyanation, Halogenation, and Allylation. Journal of the American Chemical Society, 2014, 136, 17722-17725.	13.7	519
2	The CH Activation/1,3â€Diyne Strategy: Highly Selective Direct Synthesis of Diverse Bisheterocycles by Rh ^{III} Catalysis. Angewandte Chemie - International Edition, 2014, 53, 9650-9654.	13.8	170
3	αâ€MsO/TsO/Cl Ketones as Oxidized Alkyne Equivalents: Redoxâ€Neutral Rhodium(III)â€Catalyzed CH Activation for the Synthesis of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2014, 53, 2754-2758.	13.8	159
4	Citronellal as key compound in organic synthesis. Tetrahedron, 2007, 63, 6671-6712.	1.9	119
5	Direct Functionalization with Complete and Switchable Positional Control: Free Phenol as a Role Model. Angewandte Chemie - International Edition, 2014, 53, 7710-7712.	13.8	55
6	Water-Tolerant and Atom Economical Amide Bond Formation by Metal-Substituted Polyoxometalate Catalysts. ACS Catalysis, 2019, 9, 10245-10252.	11.2	49
7	The Dawn of Metal-Oxo Clusters as Artificial Proteases: From Discovery to the Present and Beyond. Accounts of Chemical Research, 2021, 54, 1673-1684.	15.6	48
8	Noncovalent Substrateâ€Directed Enantioselective Heck Reactions: Synthesis of S―and P‧tereogenic Heterocycles. Chemistry - A European Journal, 2016, 22, 11205-11209.	3.3	44
9	Nanozymatic Activity of UiO-66 Metal–Organic Frameworks: Tuning the Nanopore Environment Enhances Hydrolytic Activity toward Peptide Bonds. ACS Applied Nano Materials, 2020, 3, 8931-8938.	5.0	42
10	Connecting remote C–H bond functionalization and decarboxylative coupling using simple amines. Nature Chemistry, 2020, 12, 489-496.	13.6	41
11	The forgotten chemistry of group(IV) metals: A survey on the synthesis, structure, and properties of discrete Zr(IV), Hf(IV), and Ti(IV) oxo clusters. Coordination Chemistry Reviews, 2021, 438, 213886.	18.8	40
12	Interplay between structural parameters and reactivity of Zr ₆ -based MOFs as artificial proteases. Chemical Science, 2020, 11, 6662-6669.	7.4	38
13	Addition of chalcogenolate anions to terminal alkynes using microwave and solvent-free conditions: easy access to bis-organochalcogen alkenes. Tetrahedron Letters, 2006, 47, 935-938.	1.4	33
14	The first synthesis of β-phenylchalcogeno-α,β-unsaturated esters via hydrochalcogenation of acetylenes using microwave and solvent-free conditions. Tetrahedron Letters, 2005, 46, 1679-1682.	1.4	31
15	Discrete Hf ₁₈ Metalâ€oxo Cluster as a Heterogeneous Nanozyme for Siteâ€Specific Proteolysis. Angewandte Chemie - International Edition, 2020, 59, 9094-9101.	13.8	31
16	En Route to a Heterogeneous Catalytic Direct Peptide Bond Formation by Zr-Based Metal–Organic Framework Catalysts. ACS Catalysis, 2021, 11, 7647-7658.	11.2	31
17	Synthesis of beta-phenylchalcogeno-alpha, beta-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions. Journal of the Brazilian Chemical Society, 2007, 18, 943-950.	0.6	24
18	Redox Activity of Ce(IV)-Substituted Polyoxometalates toward Amino Acids and Peptides. Inorganic Chemistry, 2020, 59, 10569-10577.	4.0	19

#	Article	IF	CITATIONS
19	Homogeneous Metal Catalysts with Inorganic Ligands: Probing Ligand Effects in Lewis Acid Catalyzed Direct Amide Bond Formation. ACS Catalysis, 2021, 11, 271-277.	11.2	19
20	The Heck–Matsuda arylation of 2-hetero-substituted acrylates. Tetrahedron Letters, 2011, 52, 42-45.	1.4	16
21	Enhancing the Catalytic Activity of MOFâ€808 Towards Peptide Bond Hydrolysis through Synthetic Modulations. Chemistry - A European Journal, 2021, 27, 17230-17239.	3.3	16
22	Revisiting the Intermolecular Fujiwara Hydroarylation of Alkynes. European Journal of Organic Chemistry, 2017, 2017, 1794-1803.	2.4	14
23	Catalytic One-Step Deoxytrifluoromethylation of Alcohols. Journal of Organic Chemistry, 2019, 84, 2061-2071.	3.2	11
24	Expanding the reactivity of inorganic clusters towards proteins: the interplay between the redox and hydrolytic activity of Ce(<scp>iv</scp>)-substituted polyoxometalates as artificial proteases. Chemical Science, 2021, 12, 10655-10663.	7.4	11
25	Zirconium oxo clusters as discrete molecular catalysts for the direct amide bond formation. Catalysis Science and Technology, 2022, 12, 3190-3201.	4.1	11
26	Heterogeneous nanozymatic activity of Hf oxo-clusters embedded in a metal–organic framework towards peptide bond hydrolysis. Nanoscale, 2021, 13, 12298-12305.	5.6	8
27	Discrete Hf 18 Metalâ€oxo Cluster as a Heterogeneous Nanozyme for Siteâ€Specific Proteolysis. Angewandte Chemie, 2020, 132, 9179-9186.	2.0	7
28	Which factors govern the adsorption of peptides to Zr(<scp>iv</scp>)-based metal–organic frameworks?. Materials Advances, 2022, 3, 2475-2487.	5.4	7
29	Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan–Kynurenine Pathway. Journal of Medicinal Chemistry, 2021, 64, 797-811.	6.4	4
30	Kinetic and Interaction Studies of Adenosine-5′-Triphosphate (ATP) Hydrolysis with Polyoxovanadates. Metals, 2021, 11, 1678.	2.3	3
31	O desafio da ativação das ligações C-H em sÃntese orgânica. Quimica Nova, 2011, 34, 1779-1790.	0.3	1
32	NFSI and Its Analogs Fluorination for Preparing Alkenyl Fluorides. , 2018, , 1-6.		1
33	SelectFluor and Its Analogs Fluorination for Preparing Alkenyl Fluorides. , 2018, , 1-8.		1
34	The First Synthesis of β-Phenylchalcogeno-α,β-Unsaturated Esters via Hydrochalcogenation of Acetylenes Using Microwave and Solvent-Free Conditions ChemInform, 2005, 36, no.	0.0	0