Robert J Messinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046772/publications.pdf

Version: 2024-02-01

53 2,246 17 28
papers citations h-index g-index

54 54 54 54 3810

54 54 54 3810 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Making it stick: convection, reaction and diffusion in surface-based biosensors. Nature Biotechnology, 2008, 26, 417-426.	17.5	819
2	Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science, 2011, 333, 328-332.	12.6	750
3	Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems. Electrochimica Acta, 2022, 412, 140072.	5.2	78
4	Topological, Geometric, and Chemical Order in Materials: Insights from Solid-State NMR. Accounts of Chemical Research, 2013, 46, 1975-1984.	15.6	60
5	Suppression of Electro-Osmotic Flow by Surface Roughness. Physical Review Letters, 2010, 105, 144503.	7.8	54
6	Understanding and Controlling Organic–Inorganic Interfaces in Mesostructured Hybrid Photovoltaic Materials. Journal of the American Chemical Society, 2011, 133, 10119-10133.	13.7	54
7	Synthesis and Electrochemical Performance of the Orthorhombic Li ₂ Fe(SO ₄) ₂ Polymorph for Li-lon Batteries. Chemistry of Materials, 2014, 26, 4178-4189.	6.7	53
8	Revealing Defects in Crystalline Lithium-Ion Battery Electrodes by Solid-State NMR: Applications to LiVPO ₄ F. Chemistry of Materials, 2015, 27, 5212-5221.	6.7	47
9	Coâ€development of Crystalline and Mesoscopic Order in Mesostructured Zeolite Nanosheets. Angewandte Chemie - International Edition, 2015, 54, 927-931.	13.8	40
10	Understanding Local Defects in Li-Ion Battery Electrodes through Combined DFT/NMR Studies: Application to LiVPO ₄ F. Journal of Physical Chemistry C, 2017, 121, 3219-3227.	3.1	37
11	Materials Compatibility in Rechargeable Aluminum Batteries: Chemical and Electrochemical Properties between Vanadium Pentoxide and Chloroaluminate Ionic Liquids. Chemistry of Materials, 2019, 31, 7238-7247.	6.7	35
12	Effects of Graphite Structure and Ion Transport on the Electrochemical Properties of Rechargeable Aluminum–Graphite Batteries. ACS Applied Energy Materials, 2019, 2, 7799-7810.	5.1	30
13	Quantitative Molecular-Level Understanding of Electrochemical Aluminum-Ion Intercalation into a Crystalline Battery Electrode. ACS Energy Letters, 2020, 5, 2842-2848.	17.4	27
14	Molecular Origins of Macroscopic Mechanical Properties of Elastomeric Organosiloxane Foams. Macromolecules, 2015, 48, 4835-4849.	4.8	20
15	Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling. Advanced Energy Materials, 2022, 12, .	19.5	20
16	Increasing the detection speed of an all-electronic real-time biosensor. Lab on A Chip, 2012, 12, 954.	6.0	18
17	Nonâ€Topotactic Transformation of Silicate Nanolayers into Mesostructured MFI Zeolite Frameworks During Crystallization. Angewandte Chemie - International Edition, 2017, 56, 5164-5169.	13.8	17
18	Correlated Diffusivities, Solubilities, and Hydrophobic Interactions in Ternary Polydimethylsiloxane–Water–Tetrahydrofuran Mixtures. Macromolecules, 2016, 49, 6910-6917.	4.8	14

#	Article	IF	Citations
19	Tunable Pseudocapacitive Intercalation of Chloroaluminate Anions into Graphite Electrodes for Rechargeable Aluminum Batteries. Journal of the Electrochemical Society, 2021, 168, 060514.	2.9	13
20	Molecular-level environments of intercalated chloroaluminate anions in rechargeable aluminum-graphite batteries revealed by solid-state NMR spectroscopy. Journal of Materials Chemistry A, 2020, 8, 16006-16017.	10.3	12
21	Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation. Journal of Chemical Physics, 2017, 147, 134902.	3.0	11
22	Soluble Electrolyte-Coordinated Sulfide Species Revealed in Al–S Batteries by Nuclear Magnetic Resonance Spectroscopy. Chemistry of Materials, 2022, 34, 4486-4495.	6.7	10
23	Coâ€development of Crystalline and Mesoscopic Order in Mesostructured Zeolite Nanosheets. Angewandte Chemie, 2015, 127, 941-945.	2.0	9
24	Magicâ€angleâ€spinningâ€induced local ordering in polymer electrolytes and its effects on solidâ€state diffusion and relaxation NMR measurements. Magnetic Resonance in Chemistry, 2020, 58, 1118-1129.	1.9	6
25	Interplay between coordination, dynamics, and conductivity mechanism in Mg/Al-catenated ionic liquid electrolytes. Journal of Power Sources, 2022, 524, 231084.	7.8	6
26	Nonâ€Topotactic Transformation of Silicate Nanolayers into Mesostructured MFI Zeolite Frameworks During Crystallization. Angewandte Chemie, 2017, 129, 5246-5251.	2.0	3
27	Conductive Polymers As Hybrid Battery-Capacitor Electrode Materials. ECS Meeting Abstracts, 2020, MA2020-02, 336-336.	0.0	2
28	(Invited) Molecular-Level Understanding of Ion Intercalation Mechanisms in Aluminum and Zinc Battery Electrodes Revealed By Solid-State NMR Spectroscopy. ECS Meeting Abstracts, 2019, , .	0.0	1
29	(Invited) Effect of Ion Coordination on the Long-Range Charge Migration Processes in Ionic Liquid-Based Hybrid Al/Mg Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 422-422.	0.0	0
30	Correlating Molecular-Level Environments of Chloroaluminate Species with Electrochemical Behavior in Rechargeable Aluminum-Graphite Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
31	Failure Analysis of the Rechargeable Porous Zinc Electrode in Alkaline Electrolyte. ECS Meeting Abstracts, 2018, , .	0.0	0
32	Cathode Materials for Rechargeable Aluminum Metal Batteries: Molecular-Level Insights, Challenges, & Opportunities. ECS Meeting Abstracts, 2018, , .	0.0	0
33	Molecular-Scale Insights of Aluminum-Ion Intercalation into Chevrel Phase Mo6S8. ECS Meeting Abstracts, 2018, , .	0.0	0
34	Real-Time Identification and Understanding of Zinc Compounds in Rechargeable Zinc-Alkaline Electrodes. ECS Meeting Abstracts, 2019, , .	0.0	0
35	Investigating the Dynamic Behavior of Zinc Oxide Discharge Product in Rechargeable Zinc Electrodes. ECS Meeting Abstracts, 2019, , .	0.0	0
36	Failure Analysis of the Rechargeable Porous Zinc Electrode in Alkaline Electrolyte. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
37	Discharge Reactions of \hat{I}^3 -MnO2 and Mo6S8 Tracked in the Electrode Bulk of Sealed Devices By Energy Dispersive X-Ray Diffraction (EDXRD). ECS Meeting Abstracts, 2019, , .	0.0	О
38	Failure Analysis of the Rechargeable Porous Zinc Electrode in Alkaline Electrolyte. ECS Meeting Abstracts, 2019, , .	0.0	0
39	Tuning Ion Diffusivity and High-Rate Cycling Performance Via Graphite Exfoliation for Rechargeable Aluminum-Graphite Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 2900-2900.	0.0	0
40	A Mechanistic Understanding of the Electrochemical Activity of Zinc Oxide in Alkaline Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 574-574.	0.0	0
41	Elucidating Aluminum-Ion Intercalation and Its Effects on the Local Crystalline Framework Using Solid-State NMR Spectroscopy. ECS Meeting Abstracts, 2020, MA2020-01, 2866-2866.	0.0	0
42	Molecular-Scale Understanding of Charge Storage Mechanisms in Positive Electrode Materials for Rechargeable Aluminum Metal Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 211-211.	0.0	0
43	Rechargeable Aluminum-chalcogen Batteries: Molecular-Level Mechanistic Insights & Scientific Perspectives. ECS Meeting Abstracts, 2021, MA2021-02, 6-6.	0.0	0
44	Towards Rechargeable Aluminum-Ionic Liquid Batteries for Low-Temperature Space Applications. ECS Meeting Abstracts, 2021, MA2021-02, 1761-1761.	0.0	0
45	The Effect of Additives on the Performance and Failure Mechanisms of the Rechargeable, Low-Cost, Alkaline Zinc Electrode. ECS Meeting Abstracts, 2020, MA2020-02, 1042-1042.	0.0	0
46	Understanding Electrochemical Reaction Mechanisms and Properties of Rechargeable Aluminum-Sulfur and Aluminum-Selenium Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 379-379.	0.0	0
47	Molecular-Level to Cell-Level Understanding of the High-Rate Cycling Capability of Rechargeable Aluminum-Graphite Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 561-561.	0.0	0
48	Electrochemical Control and Understanding of the Electronic and Optical Properties of ZnO Formed in Rechargeable Zn-Alkaline Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 177-177.	0.0	0
49	Elucidating Reversible Electrochemical Anionic Redox in Intercalation Electrodes for Rechargeable Multivalent-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 121-121.	0.0	0
50	Electrochemical Performance and Charge Storage Mechanism of Flavin-like Organic Electrodes for Rechargeable Aluminum Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 3488-3488.	0.0	0
51	Electrochemical Evaluation of the Application of Hydrogel Electrolytes to Rechargeable Zn MnO2 Alkaline Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 751-751.	0.0	0
52	Towards Realizing High-Voltage Aqueous Zinc Batteries: An Investigation of the Zinc Anode in Concentrated Acetate-Based Electrolytes. ECS Meeting Abstracts, 2021, MA2021-02, 1683-1683.	0.0	0
53	Electrochemical Complexation of Polyatomic Aluminum Cations in Quinone-Type Organic Battery Electrodes Revealed By Solid-State NMR. ECS Meeting Abstracts, 2021, MA2021-02, 1685-1685.	0.0	0