Zhenqing Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046627/publications.pdf Version: 2024-02-01

ZHENOING HOU

#	Article	IF	CITATIONS
1	Endogenous Fe2+-activated ROS nanoamplifier for esterase-responsive and photoacoustic imaging-monitored therapeutic improvement. Nano Research, 2022, 15, 907-918.	5.8	20
2	A Novel Yolk–Shell Fe3O4@ Mesoporous Carbon Nanoparticle as an Effective Tumor-Targeting Nanocarrier for Improvement of Chemotherapy and Photothermal Therapy. International Journal of Molecular Sciences, 2022, 23, 1623.	1.8	11
3	Trojan-Horse Diameter-Reducible Nanotheranostics for Macroscopic/Microscopic Imaging-Monitored Chemo-Antiangiogenic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 5033-5052.	4.0	8
4	Aβ-responsive metformin-based supramolecular synergistic nanodrugs for Alzheimer's disease via enhancing microglial Aβ clearance. Biomaterials, 2022, 283, 121452.	5.7	19
5	Tumor acidity-responsive carrier-free nanodrugs based on targeting activation <i>via</i> ICC-templated assembly for NIR-II imaging-guided photothermal–chemotherapy. Biomaterials Science, 2021, 9, 1008-1019.	2.6	11
6	Selective antitumor activity of drug-free TPGS nanomicelles with ROS-induced mitochondrial cell death. International Journal of Pharmaceutics, 2021, 594, 120184.	2.6	17
7	A metal-free approach to bipyridinium salt-based conjugated porous polymers with olefin linkages. Polymer Chemistry, 2021, 12, 1661-1667.	1.9	15
8	Shuttle-Shape Carrier-Free Platinum-Coordinated Nanoreactors with O ₂ Self-Supply and ROS Augment for Enhanced Phototherapy of Hypoxic Tumor. ACS Applied Materials & Interfaces, 2021, 13, 32690-32702.	4.0	19
9	Self-targeting nanotherapy based on functionalized graphene oxide for synergistic thermochemotherapy. Journal of Colloid and Interface Science, 2021, 603, 70-84.	5.0	7
10	A novel self-targeting theranostic nanoplatform for photoacoustic imaging-monitored and enhanced chemo-sonodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 5547-5559.	2.9	14
11	Imaging-guided synergistic targeting-promoted photo-chemotherapy against cancers by methotrexate-conjugated hyaluronic acid nanoparticles. Chemical Engineering Journal, 2020, 380, 122426.	6.6	31
12	Tumor Microenvironment Cascade-Responsive Nanodrug with Self-Targeting Activation and ROS Regeneration for Synergistic Oxidation-Chemotherapy. Nano-Micro Letters, 2020, 12, 182.	14.4	38
13	Self-Distinguishing and Stimulus-Responsive Carrier-Free Theranostic Nanoagents for Imaging-Guided Chemo-Photothermal Therapy in Small-Cell Lung Cancer. ACS Applied Materials & Interfaces, 2020, 12, 51314-51328.	4.0	22
14	Novel, Self-Distinguished, Dual Stimulus-Responsive Therapeutic Nanoplatform for Intracellular On-Demand Drug Release. Molecular Pharmaceutics, 2020, 17, 2435-2450.	2.3	8
15	Self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics for magnetic resonance/photoacoustic/fluorescence imaging-guided synergistic photo-chemotherapy. Journal of Materials Chemistry B, 2020, 8, 5667-5681.	2.9	28
16	Tumor-Specific Endogenous Fe ^{II} -Activated, MRI-Guided Self-Targeting Gadolinium-Coordinated Theranostic Nanoplatforms for Amplification of ROS and Enhanced Chemodynamic Chemotherapy. ACS Applied Materials & Interfaces, 2020, 12, 14884-14904.	4.0	44
17	Ultralong-Circulating and Self-Targeting "Watson–Crick A = T―Inspired Supramolecular Nanotheranostics for NIR-II Imaging-Guided Photochemotherapy. ACS Applied Materials & Interfaces, 2020, 12, 32477-32492.	4.0	11
18	Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate–mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects. Journal of Materials Chemistry B, 2020, 8, 1922-1934.	2.9	24

ZHENQING HOU

#	Article	IF	CITATIONS
19	Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy. Journal of Controlled Release, 2020, 321, 222-235.	4.8	72
20	"Watson–Crick Gî€,C―inspired supramolecular nanodrug of methotrexate and 5-fluorouracil for tumor microenvironment-activatable self-recognizing synergistic chemotherapy. Journal of Materials Chemistry B, 2020, 8, 3829-3841.	2.9	7
21	Tumor Microenvironment-Activated and Viral-Mimicking Nanodrugs Driven by Molecular Precise Recognition for dNTP Inhibition-Induced Synergistic Cancer Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 4442-4454.	2.6	4
22	Tumor Microenvironment Responsive Shape-Reversal Self-Targeting Virus-Inspired Nanodrug for Imaging-Guided Near-Infrared-II Photothermal Chemotherapy. ACS Nano, 2019, 13, 12912-12928.	7.3	118
23	pH-responsive stearic acid-O-carboxymethyl chitosan assemblies as carriers delivering small molecular drug for chemotherapy. Materials Science and Engineering C, 2019, 105, 110107.	3.8	20
24	Redox-Responsive and Dual-Targeting Hyaluronic Acid–Methotrexate Prodrug Self-Assembling Nanoparticles for Enhancing Intracellular Drug Self-Delivery. Molecular Pharmaceutics, 2019, 16, 3133-3144.	2.3	25
25	Multifunctional Nanosystem Based on Graphene Oxide for Synergistic Multistage Tumor-Targeting and Combined Chemo-Photothermal Therapy. Molecular Pharmaceutics, 2019, 16, 1982-1998.	2.3	38
26	Light/pH-Triggered Biomimetic Red Blood Cell Membranes Camouflaged Small Molecular Drug Assemblies for Imaging-Guided Combinational Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 15262-15275.	4.0	90
27	Novel Core-Interlayer-Shell DOX/ZnPc Co-loaded MSNs@ pH-Sensitive CaP@PEGylated Liposome for Enhanced Synergetic Chemo-Photodynamic Therapy. Pharmaceutical Research, 2018, 35, 57.	1.7	33
28	Novel theranostic zinc phthalocyanine–phospholipid complex self-assembled nanoparticles for imaging-guided targeted photodynamic treatment with controllable ROS production and shape-assisted enhanced cellular uptake. Colloids and Surfaces B: Biointerfaces, 2018, 162, 76-89.	2.5	8
29	Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy. International Journal of Nanomedicine, 2018, Volume 13, 1381-1398.	3.3	50
30	Glutathione-responsive self-delivery nanoparticles assembled by curcumin dimer for enhanced intracellular drug delivery. International Journal of Pharmaceutics, 2018, 549, 230-238.	2.6	30
31	Integration of phospholipid-hyaluronic acid-methotrexate nanocarrier assembly and amphiphilic drug–drug conjugate for synergistic targeted delivery and combinational tumor therapy. Biomaterials Science, 2018, 6, 1818-1833.	2.6	29
32	Zinc phthalocyanine-soybean phospholipid complex based drug carrier for switchable photoacoustic/fluorescence image, multiphase photothermal/photodynamic treatment and synergetic therapy. Journal of Controlled Release, 2018, 284, 1-14.	4.8	34
33	Core-interlayer-shell Fe3O4@mSiO2@lipid-PEG-methotrexate nanoparticle for multimodal imaging and multistage targeted chemo-photodynamic therapy. International Journal of Pharmaceutics, 2017, 521, 19-32.	2.6	48
34	Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. Journal of Controlled Release, 2017, 258, 95-107.	4.8	207
35	Cube-shaped theranostic paclitaxel prodrug nanocrystals with surface functionalization of SPC and MPEC-DSPE for imaging and chemotherapy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 649-660.	2.5	11
36	Programmed Nanococktail Based on pH-Responsive Function Switch for Self-Synergistic Tumor-Targeting Therapy. ACS Applied Materials & amp; Interfaces, 2017, 9, 39127-39142.	4.0	30

ZHENQING HOU

#	Article	IF	CITATIONS
37	Methotrexate–Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 34650-34665.	4.0	105
38	Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. Journal of Materials Chemistry B, 2017, 5, 6835-6846.	2.9	43
39	Design and in vitro evaluation of self-assembled indometacin prodrug nanoparticles for sustained/controlled release and reduced normal cell toxicity. Applied Surface Science, 2017, 425, 674-681.	3.1	11
40	Dual-drug loaded nanoneedles with targeting property for efficient cancer therapy. Journal of Nanobiotechnology, 2017, 15, 91.	4.2	17
41	A Comparative Evaluation of Hydroxycamptothecin Drug Nanorods With and Without Methotrexate Prodrug Functionalization for Drug Delivery. Nanoscale Research Letters, 2016, 11, 384.	3.1	12
42	Self-assembly of multifunctional integrated nanoparticles loaded with a methotrexate–phospholipid complex: combining simplicity and efficacy in both targeting and anticancer effects. RSC Advances, 2016, 6, 86717-86727.	1.7	11
43	Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy. Nanoscale Research Letters, 2016, 11, 294.	3.1	10
44	Self-assembly of the active lactone form of a camptothecin–phospholipid complex for sustained nuclear drug delivery. RSC Advances, 2016, 6, 82949-82960.	1.7	13
45	Dual-acting, function-responsive, and high drug payload nanospheres for combining simplicity and efficacy in both self-targeted multi-drug co-delivery and synergistic anticancer effect. International Journal of Pharmaceutics, 2016, 512, 194-203.	2.6	14
46	Drp1-Dependent Mitochondrial Fission Mediates Toxicity of Positively Charged Graphene in Microglia. ACS Biomaterials Science and Engineering, 2016, 2, 722-733.	2.6	17
47	Direct Growth of Microspheres on Amorphous Precursor Domains in Polymer-Controlled Crystallization of Indomethacin. Crystal Growth and Design, 2016, 16, 1428-1434.	1.4	14
48	Drug/Dye-Loaded, Multifunctional PEG–Chitosan–Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging. ACS Applied Materials & Interfaces, 2015, 7, 11908-11920.	4.0	119
49	Tumor-targeted co-delivery of mitomycin C and 10-hydroxycamptothecin via micellar nanocarriers for enhanced anticancer efficacy. RSC Advances, 2015, 5, 23022-23033.	1.7	9
50	Orthogonally Functionalized Nanoscale Micelles for Active Targeted Codelivery of Methotrexate and Mitomycin C with Synergistic Anticancer Effect. Molecular Pharmaceutics, 2015, 12, 769-782.	2.3	56
51	Self-Assembled Nanoparticles Based on Amphiphilic Anticancer Drug–Phospholipid Complex for Targeted Drug Delivery and Intracellular Dual-Controlled Release. ACS Applied Materials & Interfaces, 2015, 7, 17573-17581.	4.0	66
52	Validation of a dual role of methotrexate-based chitosan nanoparticles in vivo. RSC Advances, 2015, 5, 41393-41400.	1.7	3
53	Integration of an anti-tumor drug into nanocrystalline assemblies for sustained drug release. Chemical Science, 2015, 6, 1650-1654.	3.7	18
54	Bacillus-Shape Design of Polymer Based Drug Delivery Systems with Janus-Faced Function for Synergistic Targeted Drug Delivery and More Effective Cancer Therapy. Molecular Pharmaceutics, 2015, 12, 1318-1327.	2.3	28

ZHENQING HOU

#	Article	IF	CITATIONS
55	Self-Targeted, Shape-Assisted, and Controlled-Release Self-Delivery Nanodrug for Synergistic Targeting/Anticancer Effect of Cytoplasm and Nucleus of Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 25553-25559.	4.0	59
56	Self-targeted, bacillus-shaped, and controlled-release methotrexate prodrug polymeric nanoparticles for intratumoral administration with improved therapeutic efficacy in tumor-bearing mice. Journal of Materials Chemistry B, 2015, 3, 7707-7717.	2.9	22
57	Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system. International Journal of Nanomedicine, 2014, 9, 2073.	3.3	61
58	Ethylenediaminetetraacetic acid as capping ligands for highly water-dispersible iron oxide particles. Nanoscale Research Letters, 2014, 9, 27.	3.1	26
59	Novel methotrexate prodrug-targeted drug delivery system based on PEG–lipid–PLA hybrid nanoparticles for enhanced anticancer efficacy and reduced toxicity of mitomycin C. Journal of Materials Chemistry B, 2014, 2, 6534-6548.	2.9	39
60	Validation of a Janus role of methotrexate-based PEGylated chitosan nanoparticles in vitro. Nanoscale Research Letters, 2014, 9, 363.	3.1	25
61	Development of Both Methotrexate and Mitomycin C Loaded PEGylated Chitosan Nanoparticles for Targeted Drug Codelivery and Synergistic Anticancer Effect. ACS Applied Materials & Interfaces, 2014, 6, 11413-11423.	4.0	77
62	Mitomycin C-Soybean Phosphatidylcholine Complex-Loaded Self-Assembled PEG-Lipid-PLA Hybrid Nanoparticles for Targeted Drug Delivery and Dual-Controlled Drug Release. Molecular Pharmaceutics, 2014, 11, 2915-2927.	2.3	64
63	Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles. Nanoscale Research Letters, 2014, 9, 687.	3.1	8
64	Phytosomes Loaded with Mitomycin C–Soybean Phosphatidylcholine Complex Developed for Drug Delivery. Molecular Pharmaceutics, 2013, 10, 90-101.	2.3	118
65	Preparation and in vitro evaluation of an ultrasound-triggered drug delivery system: 10-Hydroxycamptothecin loaded PLA microbubbles. Ultrasonics, 2012, 52, 836-841.	2.1	15
66	Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Research Letters, 2011, 6, 563.	3.1	58
67	PLA nanoparticles loaded with an active lactone form of hydroxycamptothecin: Development, optimization, and in vitro–in vivo evaluation in mice bearing H22 solid tumor. Drug Development Research, 2011, 72, 337-345.	1.4	6
68	Design of a Smart Transdermal Insulin Drug Delivery System. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	3
69	Preparation and Evaluation of Implantable Chitosan-Collagen-Soybean Phosphatidylcholine Film Impregnated with Mitomycin C-PLA- Nanoparticles. , 2009, , .		2
70	Preparation and Characterization of PLA Ultrasound Contrast Agents by Combining an Ultrasound Method and a Shirasu Porous Glass (SPG) Membrane Emulsification Technique. , 2009, , .		0
71	In vitro and in vivo evaluation of novel implantable collagen–chitosan–soybean phosphatidylcholine composite film for the sustained delivery of mitomycin C. Drug Development Research, 2009, 70, 206-213.	1.4	4
72	Optimization of Production of PLA Microbubble Ultrasound Contrast Agents for Hydroxycamptothecin Delivery. , 2008, , .		2