List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/504631/publications.pdf Version: 2024-02-01

		28736	20023
214	16,161	57	121
papers	citations	h-index	g-index
222	222	222	21740
all docs	docs citations	times ranked	citing authors
	uota citationa	times ranked	citing autions

INNOS VOROS

#	Article	IF	CITATIONS
1	An experimental paradigm to investigate stimulation dependent activity in topologically constrained neuronal networks. Biosensors and Bioelectronics, 2022, 201, 113896.	5.3	13
2	Topologically controlled circuits of human iPSC-derived neurons for electrophysiology recordings. Lab on A Chip, 2022, 22, 1386-1403.	3.1	12
3	Engineered Biological Neural Networks on High Density CMOS Microelectrode Arrays. Frontiers in Neuroscience, 2022, 16, 829884.	1.4	15
4	Magnetic Manipulation of Nanowires for Engineered Stretchable Electronics. ACS Nano, 2022, 16, 837-846.	7.3	8
5	Nanoscale Patterning of <i>In Vitro</i> Neuronal Circuits. ACS Nano, 2022, 16, 5731-5742.	7.3	8
6	Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2001397.	3.9	39
7	Ultra-Stable Molecular Sensors by Sub-Micron Referencing and Why They Should Be Interrogated by Optical Diffraction—Part I. The Concept of a Spatial Affinity Lock-in Amplifier. Sensors, 2021, 21, 469.	2.1	5
8	Aptamer Conformational Change Enables Serotonin Biosensing with Nanopipettes. Analytical Chemistry, 2021, 93, 4033-4041.	3.2	52
9	Investigating Complex Samples with Molograms of Low-Affinity Binders. ACS Sensors, 2021, 6, 1067-1076.	4.0	5
10	An Approach for the Real-Time Quantification of Cytosolic Protein–Protein Interactions in Living Cells. ACS Sensors, 2021, 6, 1572-1582.	4.0	9
11	Sensing serotonin secreted from human serotonergic neurons using aptamer-modified nanopipettes. Molecular Psychiatry, 2021, 26, 2753-2763.	4.1	19
12	Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nature Electronics, 2021, 4, 291-301.	13.1	106
13	Nonspecific Binding—Fundamental Concepts and Consequences for Biosensing Applications. Chemical Reviews, 2021, 121, 8095-8160.	23.0	113
14	Total internal reflection focal molography (TIR-M). Sensors and Actuators B: Chemical, 2021, 349, 130746.	4.0	3
15	Ultra Stable Molecular Sensors by Submicron Referencing and Why They Should Be Interrogated by Optical Diffraction—Part II. Experimental Demonstration. Sensors, 2021, 21, 9.	2.1	11
16	Integration of silver nanowires into SU-8 hollow cantilevers for piezoresistive-based sensing. Sensors and Actuators A: Physical, 2020, 301, 111748.	2.0	4
17	Theoretical and Experimental Investigation of Ligand-Induced Particle–Particle Interactions. Journal of Physical Chemistry C, 2020, 124, 1566-1574.	1.5	4
18	Multiscale Additive Manufacturing of Metal Microstructures. Advanced Engineering Materials, 2020, 22, 1900961.	1.6	36

#	Article	IF	CITATIONS
19	An analytical method to control the surface density and stability of DNA-gold nanoparticles for an optimized biosensor. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110650.	2.5	18
20	Additive Manufacturing of Sub-Micron to Sub-mm Metal Structures with Hollow AFM Cantilevers. Micromachines, 2020, 11, 6.	1.4	31
21	Optoâ€Eâ€Dura: A Soft, Stretchable ECoG Array for Multimodal, Multiscale Neuroscience. Advanced Healthcare Materials, 2020, 9, e2000814.	3.9	48
22	Continuous Heart Volume Monitoring by Fully Implantable Soft Strain Sensor. Advanced Healthcare Materials, 2020, 9, e2000855.	3.9	27
23	Force-Controlled Formation of Dynamic Nanopores for Single-Biomolecule Sensing and Single-Cell Secretomics. ACS Nano, 2020, 14, 12993-13003.	7.3	9
24	Quantification of Molecular Interactions in Living Cells in Real Time using a Membrane Protein Nanopattern. Analytical Chemistry, 2020, 92, 8983-8991.	3.2	10
25	Visualizing and Analyzing 3D Metal Nanowire Networks for Stretchable Electronics. Advanced Theory and Simulations, 2020, 3, 2000038.	1.3	9
26	Image reversal reactive immersion lithography improves the detection limit of focal molography: erratum. Optics Letters, 2020, 45, 918.	1.7	1
27	Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nature Nanotechnology, 2019, 14, 791-798.	15.6	49
28	Dark-Field Microwells toward High-Throughput Direct miRNA Sensing with Gold Nanoparticles. ACS Sensors, 2019, 4, 1950-1956.	4.0	24
29	Principles for Sensitive and Robust Biomolecular Interaction Analysis: The Limits of Detection and Resolution of Diffraction-Limited Focal Molography. Physical Review Applied, 2019, 11, .	1.5	15
30	Establishing Force Spectrscopy with Lipid Vesicle Probes towards the Investigation of Membrane Fusion. Biophysical Journal, 2019, 116, 366a-367a.	0.2	0
31	A Versatile Protein and Cell Patterning Method Suitable for Long-Term Neural Cultures. Langmuir, 2019, 35, 2966-2975.	1.6	14
32	Unsupervised data to content transformation with histogram-matching cycle-consistent generative adversarial networks. Nature Machine Intelligence, 2019, 1, 461-470.	8.3	22
33	SU-8 Micropipettes for Gentle Single-cell Manipulation. Chimia, 2019, 73, 1033.	0.3	1
34	Fast and Versatile Multiscale Patterning by Combining Template-Stripping with Nanotransfer Printing. ACS Nano, 2018, 12, 2514-2520.	7.3	29
35	Highâ€Density Stretchable Electrode Grids for Chronic Neural Recording. Advanced Materials, 2018, 30, e1706520.	11.1	211
36	Multifunctional 3D electrode platform for real-time in situ monitoring and stimulation of cardiac tissues. Biosensors and Bioelectronics, 2018, 112, 149-155.	5.3	46

#	Article	IF	CITATIONS
37	Skin Conformal Polymer Electrodes for Clinical ECG and EEG Recordings. Advanced Healthcare Materials, 2018, 7, e1700994.	3.9	172
38	Local Chemical Stimulation of Neurons with the Fluidic Force Microscope (FluidFM). ChemPhysChem, 2018, 19, 1234-1244.	1.0	14
39	Predictive Model for the Electrical Transport within Nanowire Networks. ACS Nano, 2018, 12, 11080-11087.	7.3	52
40	Simultaneous scanning ion conductance and atomic force microscopy with a nanopore: Effect of the aperture edge on the ion current images. Journal of Applied Physics, 2018, 124, .	1.1	12
41	A guide towards long-term functional electrodes interfacing neuronal tissue. Journal of Neural Engineering, 2018, 15, 061001.	1.8	44
42	Modular microstructure design to build neuronal networks of defined functional connectivity. Biosensors and Bioelectronics, 2018, 122, 75-87.	5.3	67
43	Soft Electronic Strain Sensor with Chipless Wireless Readout: Toward Realâ€Time Monitoring of Bladder Volume. Advanced Materials Technologies, 2018, 3, 1800031.	3.0	32
44	Investigation of Synaptic Vesicle Fusion Mechanisms with Novel Vesicular Force Microscopy. Biophysical Journal, 2018, 114, 607a.	0.2	0
45	Simple and Inexpensive Paper-Based Astrocyte Co-culture to Improve Survival of Low-Density Neuronal Networks. Frontiers in Neuroscience, 2018, 12, 94.	1.4	16
46	Force controlled SU-8 micropipettes fabricated with a sideways process. Journal of Micromechanics and Microengineering, 2018, 28, 095015.	1.5	6
47	Monolayer Graphene Coupled to a Flexible Plasmonic Nanograting for Ultrasensitive Strain Monitoring. Small, 2018, 14, e1801187.	5.2	22
48	Image reversal reactive immersion lithography improves the detection limit of focal molography. Optics Letters, 2018, 43, 5801.	1.7	8
49	Improving FoRe: A New Inlet Design for Filtering Samples through Individual Microarray Spots. ACS Sensors, 2017, 2, 339-345.	4.0	5
50	Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based Single-Cell Force Spectroscopy. ACS Nano, 2017, 11, 3867-3874.	7.3	31
51	Soft Hydrogels Featuring In-Depth Surface Density Gradients for the Simple Establishment of 3D Tissue Models for Screening Applications. SLAS Discovery, 2017, 22, 635-644.	1.4	13
52	Focal molography is a new method for the in situ analysis of molecular interactions in biological samples. Nature Nanotechnology, 2017, 12, 1089-1095.	15.6	36
53	Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. Langmuir, 2017, 33, 8594-8605.	1.6	35
54	Paper-based patterned 3D neural cultures as a tool to study network activity on multielectrode arrays. RSC Advances, 2017, 7, 39359-39371.	1.7	11

#	Article	IF	CITATIONS
55	Trends in Epidermal Stretchable Electronics for Noninvasive Long-term Healthcare Applications. International Journal of Automation and Smart Technology, 2017, 7, 37-52.	0.4	10
56	Templateâ€Free 3D Microprinting of Metals Using a Forceâ€Controlled Nanopipette for Layerâ€byâ€Layer Electrodeposition. Advanced Materials, 2016, 28, 2311-2315.	11.1	141
57	Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics. Scientific Reports, 2016, 6, 25641.	1.6	30
58	Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy. Biointerphases, 2016, 11, 011004.	0.6	26
59	Fast and Efficient Fabrication of Intrinsically Stretchable Multilayer Circuit Boards by Wax Pattern Assisted Filtration. Small, 2016, 12, 180-184.	5.2	72
60	SU-8 hollow cantilevers for AFM cell adhesion studies. Journal of Micromechanics and Microengineering, 2016, 26, 055006.	1.5	29
61	Serial weighting of micro-objects with resonant microchanneled cantilevers. Nanotechnology, 2016, 27, 415502.	1.3	11
62	"Brains on a chip― Towards engineered neural networks. TrAC - Trends in Analytical Chemistry, 2016, 78, 60-69.	5.8	62
63	Controlled single-cell deposition and patterning by highly flexible hollow cantilevers. Lab on A Chip, 2016, 16, 1663-1674.	3.1	27
64	Patterning gold nanoparticles in liquid environment with high ionic strength for local fabrication of up to 100 <i>î¼</i> m long metallic interconnections. Nanotechnology, 2015, 26, 175301.	1.3	6
65	Stretchable Silver Nanowire–Elastomer Composite Microelectrodes with Tailored Electrical Properties. ACS Applied Materials & Interfaces, 2015, 7, 13467-13475.	4.0	77
66	Controlling cell migration and adhesion into a scaffold by external electric currents. , 2015, 2015, 3549-52.		3
67	Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers. Physical Review Letters, 2015, 115, 238103.	2.9	33
68	Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347, 159-163.	6.0	845
69	Force-Controlled Patch Clamp of Beating Cardiac Cells. Nano Letters, 2015, 15, 1743-1750.	4.5	62
70	Femtomolar oligonucleotide detection by a one-step gold nanoparticle-based assay. Colloids and Surfaces B: Biointerfaces, 2015, 135, 193-200.	2.5	9
71	Local surface modification via confined electrochemical deposition with FluidFM. RSC Advances, 2015, 5, 84517-84522.	1.7	37
72	Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature. Nanoscale, 2015, 7, 15080-15085.	2.8	25

7.3

57

#	Article	IF	CITATIONS
73	lodide sensing via electrochemical etching of ultrathin gold films. Nanotechnology, 2015, 26, 025202.	1.3	8
74	Electrochemical Control of the Enzymatic Polymerization of PEG Hydrogels: Formation of Spatially Controlled Biological Microenvironments. Advanced Healthcare Materials, 2014, 3, 508-514.	3.9	16
75	Coagulation at the Blood–Electrode Interface: The Role of Electrochemical Desorption and Degradation of Fibrinogen. Langmuir, 2014, 30, 7227-7234.	1.6	2
76	The entropy of water in swelling PGA/PAH polyelectrolyte multilayers. Soft Matter, 2014, 10, 688-693.	1.2	9
77	Tuning the Electrochemical Swelling of Polyelectrolyte Multilayers toward Nanoactuation. Langmuir, 2014, 30, 12057-12066.	1.6	14
78	Local Polymer Replacement for Neuron Patterning and <i>in Situ</i> Neurite Guidance. Langmuir, 2014, 30, 7037-7046.	1.6	30
79	Twist on Protein Microarrays: Layering Wax-Patterned Nitrocellulose to Create Customizable and Separable Arrays of Multiplexed Affinity Columns. Analytical Chemistry, 2014, 86, 4209-4216.	3.2	11
80	Stretchable electronics based on Ag-PDMS composites. Scientific Reports, 2014, 4, 7254.	1.6	234
81	Fluidfm for Force Controlled Electrophysiology. Biophysical Journal, 2013, 104, 502a.	0.2	0
82	Label-free detection of cell-contractile activity with lipid nanotubes. Integrative Biology (United) Tj ETQq0 0 0 rg	3T /Oyerlo 0.6	ck 10 Tf 50 3
83	Exchangeable Colloidal AFM Probes for the Quantification of Irreversible and Long-Term Interactions. Biophysical Journal, 2013, 105, 463-472.	0.2	43
84	High Precision Release of Neurotransmitter - A New Tool. Biophysical Journal, 2013, 104, 498a.	0.2	0
85	Synthetic Lipid Nanotubes as Cell-Cell Junctions for Inter-Cellular Ca+ Propagation and for Cell Contraction Monitoring. Biophysical Journal, 2013, 104, 548a-549a.	0.2	0
86	Switching Transport through Nanopores with pH-Responsive Polymer Brushes for Controlled Ion Permeability. ACS Applied Materials & Interfaces, 2013, 5, 1400-1407.	4.0	90
87	FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticles. Nanoscale, 2013, 5, 1097-1104.	2.8	43
88	Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays. Nanoscale, 2013, 5, 4966.	2.8	15

High-Resolution Resistless Nanopatterning on Polymer and Flexible Substrates for Plasmonic Biosensing Using Stencil Masks. ACS Nano, 2012, 6, 5474-5481. 90

#	Article	IF	CITATIONS
91	A universal method for planar lipid bilayer formation by freeze and thaw. Soft Matter, 2012, 8, 5525.	1.2	21
92	Electrochemically driven delivery to cells from vesicles embedded in polyelectrolyte multilayers. Soft Matter, 2012, 8, 3641.	1.2	21
93	Electrically induced lipid migration in non-lamellar phase. Journal of Colloid and Interface Science, 2012, 386, 421-427.	5.0	2
94	Effect of polyelectrolyte interdiffusion on electron transport in redox-active polyelectrolyte multilayers. Journal of Materials Chemistry, 2012, 22, 11073.	6.7	40
95	Directed Self-Assembly of Lipid Nanotubes from Inverted Hexagonal Structures. ACS Nano, 2012, 6, 6626-6632.	7.3	21
96	Ion-induced cell sheet detachment from standard cell culture surfaces coated with polyelectrolytes. Biomaterials, 2012, 33, 3421-3427.	5.7	54
97	Simultaneous OWLS and EIS monitoring of supported lipid bilayers with the pore forming peptide melittin. Sensors and Actuators B: Chemical, 2012, 161, 600-606.	4.0	18
98	Electrochemical plasmonic sensors. Analytical and Bioanalytical Chemistry, 2012, 402, 1773-1784.	1.9	71
99	Layer-by-Layer Films Made from Extracellular Matrix Macromolecules on Silicone Substrates. Biomacromolecules, 2011, 12, 609-616.	2.6	57
100	Techniques for recording reconstituted ion channels. Analyst, The, 2011, 136, 1077.	1.7	45
101	Electrochemical Crystallization of Plasmonic Nanostructures. Nano Letters, 2011, 11, 1337-1343.	4.5	52
102	Spontaneous Formation of a Vesicle Multilayer on Top of an Exponentially Growing Polyelectrolyte Multilayer Mediated by Diffusing Poly- <scp>l</scp> -lysine. Journal of Physical Chemistry B, 2011, 115, 12386-12391.	1.2	14
103	Microarrays Made Easy: Biofunctionalized Hydrogel Channels for Rapid Protein Microarray Production. ACS Applied Materials & Interfaces, 2011, 3, 50-57.	4.0	11
104	Metallic Nanodot Arrays by Stencil Lithography for Plasmonic Biosensing Applications. ACS Nano, 2011, 5, 844-853.	7.3	87
105	From nanodroplets to continuous films: how the morphology of polyelectrolyte multilayers depends on the dielectric permittivity and the surface charge of the supporting substrate. Soft Matter, 2011, 7, 3861.	1.2	17
106	Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis. Biosensors, 2011, 1, 70-92.	2.3	94
107	Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning. Integrative Biology (United Kingdom), 2011, 3, 1102.	0.6	47
108	Conformational Changes of Calmodulin on Calcium and Peptide Binding Monitored by Film Bulk Acoustic Resonators. Biosensors, 2011, 1, 164-176.	2.3	1

#	Article	IF	CITATIONS
109	Single plasmonic nanoparticles for biosensing. Trends in Biotechnology, 2011, 29, 343-351.	4.9	102
110	Electrochemically switchable platform for the micro-patterning and release of heterotypic cell sheets. Biomedical Microdevices, 2011, 13, 221-230.	1.4	49
111	Electrical microcurrent to prevent conditioning film and bacterial adhesion to urological stents. Urological Research, 2011, 39, 81-88.	1.5	26
112	Electrochemically Stimulated Release from Liposomes Embedded in a Polyelectrolyte Multilayer. Advanced Functional Materials, 2011, 21, 1666-1672.	7.8	28
113	Fluorescent vesicles for signal amplification in reverse phase protein microarray assays. Analytical Biochemistry, 2011, 416, 145-151.	1.1	7
114	pH-controlled recovery of placenta-derived mesenchymal stem cell sheets. Biomaterials, 2011, 32, 4376-4384.	5.7	87
115	Comparison of FBAR and QCM-D sensitivity dependence on adlayer thickness and viscosity. Sensors and Actuators A: Physical, 2011, 165, 415-421.	2.0	38
116	Controlled <i>in situ</i> nanoscale enhancement of gold nanowire arrays with plasmonics. Nanotechnology, 2011, 22, 055203.	1.3	4
117	Swelling of electrochemically active polyelectrolyte multilayers. Current Opinion in Colloid and Interface Science, 2010, 15, 427-434.	3.4	33
118	Nonâ€Toxic Dryâ€Coated Nanosilver for Plasmonic Biosensors. Advanced Functional Materials, 2010, 20, 4250-4257.	7.8	119
119	Non-Toxic Dry-Coated Nanosilver for Plasmonic Biosensors. Advanced Functional Materials, 2010, 20, 4249-4249.	7.8	3
120	Engineering the Extracellular Environment: Strategies for Building 2D and 3D Cellular Structures. Advanced Materials, 2010, 22, 5443-5462.	11.1	147
121	Photobleaching induced damage of biomolecules: Streptavidin as â€~bio'-photoresist. Surface Science, 2010, 604, 898-905.	0.8	1
122	Effects of small pulsed nanocurrents on cell viability in vitro and in vivo: Implications for biomedical electrodes. Biomaterials, 2010, 31, 8666-8673.	5.7	3
123	Electrically controlling cell adhesion, growth and migration. Colloids and Surfaces B: Biointerfaces, 2010, 79, 365-371.	2.5	17
124	Liposome and Lipid Bilayer Arrays Towards Biosensing Applications. Small, 2010, 6, 2481-2497.	5.2	191
125	Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology. Applied Physics Letters, 2010, 97, .	1.5	80
126	Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor. Review of Scientific Instruments, 2010, 81, 053102.	0.6	21

#	Article	IF	CITATIONS
127	Simultaneous refractive index and thickness measurement with the transmission interferometric adsorption sensor. Journal Physics D: Applied Physics, 2010, 43, 405302.	1.3	15
128	Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays. Sensors, 2010, 10, 9808-9830.	2.1	15
129	Global and local view on the electrochemically induced degradation of polyelectrolyte multilayers: from dissolution to delamination. Soft Matter, 2010, 6, 4246.	1.2	26
130	Zirconium Ion Mediated Formation of Liposome Multilayers. Langmuir, 2010, 26, 10995-11002.	1.6	11
131	The Resistance of Polyelectrolyte Multilayers in a Free-Hanging Configuration. Journal of Physical Chemistry B, 2010, 114, 13982-13987.	1.2	6
132	Ion and Solvent Exchange Processes in PGA/PAH Polyelectrolyte Multilayers Containing Ferrocyanide. Journal of Physical Chemistry B, 2010, 114, 3759-3768.	1.2	33
133	A Gigaseal Obtained with a Self-Assembled Long-Lifetime Lipid Bilayer on a Single Polyelectrolyte Multilayer-Filled Nanopore. ACS Nano, 2010, 4, 5047-5054.	7.3	34
134	Chemically Tunable Electrochemical Dissolution of Noncontinuous Polyelectrolyte Assemblies: An In Situ Study Using ecAFM. ACS Applied Materials & Interfaces, 2010, 2, 3525-3531.	4.0	4
135	Electrochemistry on a Localized Surface Plasmon Resonance Sensor. Langmuir, 2010, 26, 7619-7626.	1.6	76
136	Enzyme Mediated Site-Specific Surface Modification. Langmuir, 2010, 26, 11127-11134.	1.6	19
137	Multilayers of hydrogels loaded with microparticles: a fast and simple approach for microarray manufacturing. Lab on A Chip, 2010, 10, 372-378.	3.1	6
138	Engineered Polyelectrolyte Multilayer Substrates for Adhesion, Proliferation, and Differentiation of Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2009, 15, 2977-2990.	1.6	67
139	Plasmonic nanoparticle based biosensing: experiments and simulations. Proceedings of SPIE, 2009, , .	0.8	1
140	Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing. Journal of Biomedical Optics, 2009, 14, 064027.	1.4	21
141	Gâ€protein coupled receptor array technologies: Site directed immobilisation of liposomes containing the H ₁ â€histamine or M ₂ â€muscarinic receptors. Proteomics, 2009, 9, 2052-2063.	1.3	30
142	A Microwell Array Platform for Picoliter Membrane Protein Assays. Small, 2009, 5, 1070-1077.	5.2	13
143	Biosensing by Densely Packed and Optically Coupled Plasmonic Particle Arrays. Small, 2009, 5, 1889-1896.	5.2	51
144	Nanoscale dispensing in liquid environment of streptavidin on a biotin-functionalized surface using hollow atomic force microscopy probes. Microelectronic Engineering, 2009, 86, 1481-1484.	1.1	22

#	Article	IF	CITATIONS
145	Film bulk acoustic resonators for DNA and protein detection and investigation of in vitro bacterial S-layer formation. Sensors and Actuators A: Physical, 2009, 156, 180-184.	2.0	77
146	Microarray spotting of nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 61-65.	2.3	6
147	Particle flow assays for fluorescent protein microarray applications. Biosensors and Bioelectronics, 2009, 24, 1195-1200.	5.3	8
148	Strain mapping with optically coupled plasmonic particles embedded in a flexible substrate. Optics Letters, 2009, 34, 2009.	1.7	29
149	FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond. Nano Letters, 2009, 9, 2501-2507.	4.5	369
150	Electrochemical tuning of the stability of PLL/DNA multilayers. Soft Matter, 2009, 5, 2415.	1.2	39
151	Nanoscale labels: nanoparticles and liposomes in the development of high-performance biosensors. Nanomedicine, 2009, 4, 447-467.	1.7	42
152	Measuring cell adhesion forces during the cell cycle by force spectroscopy. Biointerphases, 2009, 4, 27-34.	0.6	42
153	Nanowire Development and Characterization for Applications in Biosensing. , 2009, , 143-173.		9
154	Influence of applied currents on the viability of cells close to microelectrodes. Integrative Biology (United Kingdom), 2009, 1, 108-115.	0.6	29
155	Formation of supported lipid bilayers on indium tin oxide for dynamically-patterned membrane-functionalized microelectrode arrays. Lab on A Chip, 2009, 9, 718-725.	3.1	31
156	Symmetry Decomposed Multiple Multipole Program Calculation of Plasmonic Particles on Substrate for Biosensing Applications. Journal of Computational and Theoretical Nanoscience, 2009, 6, 749-756.	0.4	12
157	Polyelectrolyte Coatings with a Potential for Electronic Control and Cell Sheet Engineering. Advanced Materials, 2008, 20, 560-565.	11.1	100
158	Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium, with oxide electrodes: A candidate biofuel cell system. Inorganica Chimica Acta, 2008, 361, 769-777.	1.2	69
159	Electrochemical Biosensors - Sensor Principles and Architectures. Sensors, 2008, 8, 1400-1458.	2.1	591
160	In situ Sensing of Single Binding Events by Localized Surface Plasmon Resonance. Nano Letters, 2008, 8, 3450-3455.	4.5	134
161	Mannose-Based Molecular Patterns on Stealth Microspheres for Receptor-Specific Targeting of Human Antigen-Presenting Cells. Langmuir, 2008, 24, 11790-11802.	1.6	56
162	Swelling and Contraction of Ferrocyanide-Containing Polyelectrolyte Multilayers upon Application of an Electric Potential. Langmuir, 2008, 24, 13668-13676.	1.6	60

#	Article	IF	CITATIONS
163	Vesicles for Signal Amplification in a Biosensor for the Detection of Low Antigen Concentrations. Sensors, 2008, 8, 7894-7903.	2.1	16
164	Electrochemical Biosensors - Sensor Principles and Architectures. Sensors, 2008, 8, 1400-1458.	2.1	1,607
165	Nanopatterning of gold colloids for label-free biosensing. Nanotechnology, 2007, 18, 155306.	1.3	41
166	Enzymatic Biosensors towards a Multiplexed Electronic Detection System for Early Cancer Diagnostics. , 2007, , .		2
167	Heterogeneous Vesicle Arrays for Biosensing Applications. , 2007, , .		0
168	Nanopatterning with Extreme Ultraviolet Interference Lithography for Nanoelectronics and Biotechnology. , 2007, , .		0
169	Functionalizable Nanomorphology Gradients via Colloidal Self-Assembly. Langmuir, 2007, 23, 5929-5935.	1.6	55
170	Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. Biomaterials, 2007, 28, 5000-5006.	5.7	158
171	Adhesion of Polyelectrolyte Microcapsules through Biotinâ^'Streptavidin Specific Interaction. Biomacromolecules, 2006, 7, 2331-2336.	2.6	16
172	Light-Induced In Situ Patterning of DNA-Tagged Biomolecules and Nanoparticles. IEEE Transactions on Nanobioscience, 2006, 5, 215-219.	2.2	9
173	Phagocytosis of poly(L-lysine)-graft-poly (ethylene glycol) coated microspheres by antigen presenting cells: Impact of grafting ratio and poly (ethylene glycol) chain length on cellular recognition. Biointerphases, 2006, 1, 123-133.	0.6	28
174	Poly(l-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications. Biointerphases, 2006, 1, 156-165.	0.6	42
175	Creation of a functional heterogeneous vesicle array via DNA controlled surface sorting onto a spotted microarray. Biointerphases, 2006, 1, 142-145.	0.6	24
176	Use of PLL-g-PEG in Micro-Fluidic Devices for Localizing Selective and Specific Protein Binding. Langmuir, 2006, 22, 10103-10108.	1.6	62
177	Optical microarray biosensing techniques. Surface and Interface Analysis, 2006, 38, 1442-1458.	0.8	159
178	Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface. Biosensors and Bioelectronics, 2006, 21, 1476-1482.	5.3	89
179	Adsorption and electrically stimulated desorption of the triblock copolymer poly(propylene) Tj ETQq1 1 0.7843 1510-1517.	14 rgBT /O 0.8	verlock 10 T 15
180	Nitrilotriacetic Acid Functionalized Graft Copolymers: A Polymeric Interface for Selective and Reversible Binding of Histidine-Tagged Proteins. Advanced Functional Materials, 2006, 16, 243-251.	7.8	116

#	Article	IF	CITATIONS
181	Nanopatterns with Biological Functions. Journal of Nanoscience and Nanotechnology, 2006, 6, 2237-2264.	0.9	100
182	Electrically-Assisted Formation and Desorption of Dodecyl Phosphate Self-Assembled Monolayers on Indium Tin Oxide Surfaces. ECS Transactions, 2006, 1, 29-43.	0.3	1
183	Enhanced optical waveguide light mode spectroscopy via detection of fluorophore absorbance. Review of Scientific Instruments, 2006, 77, 103105.	0.6	3
184	Bioactive Patterns at the 100-nm Scale Produced Using Multifunctional Physisorbed Monolayers. MRS Bulletin, 2005, 30, 202-206.	1.7	35
185	Locally Addressable Electrochemical Patterning Technique (LAEPT) applied to poly(L-lysine)-graft-poly(ethylene glycol) adlayers on titanium and silicon oxide surfaces. Biotechnology and Bioengineering, 2005, 91, 285-295.	1.7	22
186	Biofunctional Polyelectrolyte Multilayers and Microcapsules: Control of Non-Specific and Bio-Specific Protein Adsorption. Advanced Functional Materials, 2005, 15, 357-366.	7.8	159
187	Self-assembly of functionalized spherical nanoparticles on chemically patterned microstructures. Nanotechnology, 2005, 16, 3045-3052.	1.3	25
188	A novel crossed microfluidic device for the precise positioning of proteins and vesicles. Lab on A Chip, 2005, 5, 1387.	3.1	35
189	Effects of Ionic Strength and Surface Charge on Protein Adsorption at PEGylated Surfaces. Journal of Physical Chemistry B, 2005, 109, 17545-17552.	1.2	289
190	Selective molecular assembly patterning at the nanoscale: a novel platform for producing protein patterns by electron-beam lithography on SiO2/indium tin oxide-coated glass substrates. Nanotechnology, 2005, 16, 1781-1786.	1.3	46
191	Protein Resistance of Titanium Oxide Surfaces Modified by Biologically Inspired mPEGâ^'DOPA. Langmuir, 2005, 21, 640-646.	1.6	423
192	An Aqueous-Based Surface Modification of Poly(dimethylsiloxane) with Poly(ethylene glycol) to Prevent Biofouling. Langmuir, 2005, 21, 11957-11962.	1.6	139
193	Immobilization of the Enzyme Î ² -Lactamase on Biotin-Derivatized Poly(l-lysine)-g-poly(ethylene) Tj ETQq1 1 0.784 and in Situ Optical Sensing. Langmuir, 2004, 20, 10464-10473.	-314 rgBT 1.6	Overlock 10 64
194	Micropatterning of DNA-Tagged Vesicles. Langmuir, 2004, 20, 11348-11354.	1.6	89
195	Bovine Serum Albumin Adsorption onto Colloidal Al2O3Particles:Â A New Model Based on Zeta Potential and UVâ^'Vis Measurements. Langmuir, 2004, 20, 10055-10061.	1.6	289
196	Interaction of Poly(L-Lysine)-g-Poly(Ethylene Glycol) with Supported Phospholipid Bilayers. Biophysical Journal, 2004, 87, 1711-1721.	0.2	47
197	The Density and Refractive Index of Adsorbing Protein Layers. Biophysical Journal, 2004, 87, 553-561.	0.2	665
198	Title is missing!. Tribology Letters, 2003, 15, 231-239.	1.2	136

#	Article	IF	CITATIONS
199	Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate. Pharmaceutical Research, 2003, 20, 237-246.	1.7	109
200	Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): A pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips. Biotechnology and Bioengineering, 2003, 82, 465-473.	1.7	69
201	RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnology and Bioengineering, 2003, 82, 784-790.	1.7	301
202	Chemically patterned, metal-oxide-based surfaces produced by photolithographic techniques for studying protein- and cell-interactions. II: Protein adsorption and early cell interactions. Biomaterials, 2003, 24, 1147-1158.	5.7	105
203	Poly(I-lysine)-graft-poly(ethylene glycol) Assembled Monolayers on Niobium Oxide Surfaces:  A Quantitative Study of the Influence of Polymer Interfacial Architecture on Resistance to Protein Adsorption by ToF-SIMS and in Situ OWLS. Langmuir, 2003, 19, 9216-9225.	1.6	382
204	Improved Stimulation of Human Dendritic Cells by Receptor Engagement with Surface-modified Microparticles. Journal of Drug Targeting, 2003, 11, 11-18.	2.1	58
205	Biotin-Derivatized Poly(l-lysine)-g-poly(ethylene glycol):Â A Novel Polymeric Interface for Bioaffinity Sensing. Langmuir, 2002, 18, 220-230.	1.6	261
206	A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids and Surfaces B: Biointerfaces, 2002, 24, 155-170.	2.5	608
207	Optical grating coupler biosensors. Biomaterials, 2002, 23, 3699-3710.	5.7	375
208	Poly(l-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces:Â Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption. Langmuir, 2001, 17, 489-498.	1.6	490
209	Effect of patterns and inhomogeneities on the surface of waveguides used for optical waveguide lightmode spectroscopy applications. Applied Physics B: Lasers and Optics, 2001, 72, 441-447.	1.1	32
210	Title is missing!. Tribology Letters, 2001, 10, 111-116.	1.2	106
211	Feasibility study of an online toxicological sensor based on the optical waveguide technique. Biosensors and Bioelectronics, 2000, 15, 423-429.	5.3	52
212	Poly(l-lysine)-g-Poly(ethylene glycol) Layers on Metal Oxide Surfaces:Â Attachment Mechanism and Effects of Polymer Architecture on Resistance to Protein Adsorptionâ€. Journal of Physical Chemistry B, 2000, 104, 3298-3309.	1.2	620
213	Phosphorylcholine-containing polyurethanes for the control of protein adsorption and cell attachment via photoimmobilized laminin oligopeptides. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 931-955.	1.9	39
214	FluidFM: Development of the Instrument as well as Its Applications for 2D and 3D Lithography. , 0, , 295-323.		11