José Miguel Sansano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046253/publications.pdf

Version: 2024-02-01

173 papers 5,705 citations

36 h-index 95266 68 g-index

219 all docs

219 docs citations

219 times ranked 4234 citing authors

#	Article	IF	Citations
1	Application of imidazole modified clinochlore for adsorption of ibuprofen residues from polluted water: preparation, characterization, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 2022, 19, 109-120.	2.2	3
2	Water-Dispersible Pd–N-Heterocyclic Carbene Complex Immobilized on Magnetic Nanoparticles as a New Heterogeneous Catalyst for Fluoride-Free Hiyama, Suzuki–Miyaura and Cyanation Reactions in Aqueous Media. Catalysis Letters, 2022, 152, 2650-2668.	2.6	6
3	Zeolitic imidazolate frameworks-67 (ZIF-67) supported PdCu nanoparticles for enhanced catalytic activity in Sonogashira-Hagihara and nitro group reduction under mild conditions. Molecular Catalysis, 2022, 518, 112093.	2.0	12
4	Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron, 2022, 106-107, 132629.	1.9	40
5	Ionic liquid modified carbon nanotube supported palladium nanoparticles for efficient Sonogashira-Hagihara reaction. Journal of Organometallic Chemistry, 2022, 963, 122295.	1.8	10
6	A novel base-metal multifunctional catalyst for the synthesis of 2-amino-3-cyano-4H-chromenes by a multicomponent tandem oxidation process. Scientific Reports, 2022, 12, 2867.	3.3	17
7	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -selective Tsujiâ€"Trost allylation promoted by a recyclable TSIL-palladium complex. Comptes Rendus Chimie, 2022, 25. 31-44.	0.5	O
8	Low-amount palladium supported on Fe-Cu MOF: Synergetic effect between Pd, Cu and Fe in Sonogashira-Hagihara coupling reaction and reduction of organic dyes. Molecular Catalysis, 2022, 522, 112199.	2.0	8
9	ZnCo2O4/g-C3N4/Cu nanocomposite as a new efficient and recyclable heterogeneous photocatalyst with enhanced photocatalytic activity towards the metronidazole degradation under the solar light irradiation. Environmental Science and Pollution Research, 2022, 29, 65043-65060.	5.3	3
10	Hyperbranched polymer immobilized palladium nanoparticles as an efficient and reusable catalyst for cyanation of aryl halides and reduction of nitroarenes. Journal of Organometallic Chemistry, 2022, 970-971, 122359.	1.8	2
11	Bimetallic Fe–Cu metal organic frameworks for room temperature catalysis. Applied Organometallic Chemistry, 2022, 36, .	3.5	15
12	Enantioselective 1,3-Dipolar Cycloaddition Using (Z)- \hat{l}_{\pm} -Amidonitroalkenes as a Key Step to the Access to Chiral cis-3,4-Diaminopyrrolidines. Molecules, 2022, 27, 4579.	3.8	4
13	Applications of bimetallic PdCu catalysts. Catalysis Science and Technology, 2021, 11, 2652-2702.	4.1	47
14	Transition metal-catalyzed reactions of N-sulfinyl imines. Tetrahedron Letters, 2021, 73, 153104.	1.4	0
15	A new nanomagnetic Pd-Co bimetallic alloy as catalyst in the Mizoroki–Heck and Buchwald–Hartwig amination reactions in aqueous media. Scientific Reports, 2021, 11, 17025.	3.3	9
16	Synthesis of Spiro{pyrrolidineâ€3,1′â€pyrrolo[3,4―c]pyrrole} Basic Framework by Multicomponent 1,3â€Dipolar Cycloaddition. European Journal of Organic Chemistry, 2021, 2021, 4229-4236.	2.4	3
17	Diels-Alder reactions of 1-amino-1,3-dienes and related systems. Tetrahedron, 2021, 94, 132316.	1.9	6
18	Tandem imine formation <i>via</i> auto-hydrogen transfer from alcohols to nitro compounds catalyzed by a nanomagnetically recyclable copper catalyst under solvent-free conditions. RSC Advances, 2021, 11, 19121-19127.	3.6	8

#	Article	IF	Citations
19	Novel Water Dispersible and Magnetically Recoverable Palladium Nano Catalyst for Roomâ€Temperature Suzukiâ€Miyaura Coupling Reaction. ChemistrySelect, 2021, 6, 13906-13917.	1.5	10
20	Biological properties and conformational studies of amphiphilic Pd(II) and Ni(II) complexes bearing functionalized aroylaminocarbo- <i>N</i> -thioylpyrrolinate units. Beilstein Journal of Organic Chemistry, 2021, 17, 2812-2821.	2.2	3
21	Stereodivergent routes in organic synthesis: carbohydrates, amino acids, alkaloids and terpenes. Organic and Biomolecular Chemistry, 2020, 18, 1232-1278.	2.8	25
22	Diastereoselective multicomponent phosphoramidate-aldehyde-dienophile (PAD) process for the synthesis of polysubstituted cyclohex-2-enyl-amine derivatives. Tetrahedron, 2020, 76, 130801.	1.9	4
23	New Nanomagnetic Heterogeneous Cobalt Catalyst for the Synthesis of Aryl Nitriles and Biaryls. ACS Omega, 2020, 5, 18619-18627.	3.5	15
24	High Performance Magnetically Separable Gâ€C ₃ /TiO ₂ Nanocomposite with Boosted Photocatalytic Capability towards the Cefixime Trihydrate Degradation under Visibleâ€Light. ChemistrySelect, 2020, 5, 10114-10127.	1.5	13
25	Immobilized piperazine on the surface of graphene oxide as a heterogeneous bifunctional acid–base catalyst for the multicomponent synthesis of 2-amino-3-cyano-4 <i>H</i> -chromenes. Green Chemistry, 2020, 22, 4604-4616.	9.0	32
26	g-C ₃ N ₄ \lambda3-Fe ₂ O ₃ /TiO ₂ /Pd: a new magnetically separable photocatalyst for visible-light-driven fluoride-free Hiyama and Suzuki–Miyaura cross-coupling reactions at room temperature. New Journal of Chemistry, 2020, 44, 11513-11526.	2.8	17
27	Deacylative Alkylation vs. Photoredox Catalysis in the Synthesis of 3,3'â€Bioxindoles. European Journal of Organic Chemistry, 2020, 2020, 3101-3109.	2.4	7
28	Enhanced catalytic activity of natural hematite-supported ppm levels of Pd in nitroarenes reduction. Journal of the Iranian Chemical Society, 2020, 17, 2033-2043.	2.2	4
29	Human hair catalyzed selective reduction of nitroarenes to amines. Canadian Journal of Chemistry, 2020, 98, 244-249.	1.1	9
30	Silverâ€Catalyzed Diastereoselective Synthesis of Spirocyclic Pyrrolidineâ€Lactones by 1,3â€Dipolar Cycloaddition. European Journal of Organic Chemistry, 2020, 2020, 5563-5571.	2.4	3
31	4-Amino-1,2,4-triazoles-3-thiones and 1,3,4-oxadiazoles-2-thionesÂ-palladium(II) recoverable complexes as catalysts in the sustainable Suzuki-Miyaura cross-coupling reaction. Journal of Organometallic Chemistry, 2020, 923, 121353.	1.8	4
32	Stereodivergent routes in organic synthesis: marine natural products, lactones, other natural products, heterocycles and unnatural compounds. Organic and Biomolecular Chemistry, 2020, 18, 1279-1336.	2.8	15
33	A hydrophilic heterogeneous cobalt catalyst for fluoride-free Hiyama, Suzuki, Heck and Hirao cross-coupling reactions in water. Green Chemistry, 2020, 22, 1353-1365.	9.0	36
34	Synthesis, structure and bioactivity of a mononuclear octahedral [Prolinate2-Na(MeOH)4]â^'H+ complex. Inorganica Chimica Acta, 2020, 504, 119456.	2.4	3
35	Nitroprolinates as Nucleophiles in Michaelâ€type Additions and Acylations. Synthesis of Enantiomerically Enriched Fused Aminoâ€pyrrolidinoâ€{1,2―a]pyrazinones and â€diketopiperazines. ChemCatChem, 2020, 12, 2014-2021.	3.7	5
36	Co/Cu bimetallic ZIF as New heterogeneous catalyst for reduction of nitroarenes and dyes. Applied Organometallic Chemistry, 2020, 34, e5522.	3.5	28

#	Article	IF	CITATIONS
37	Synthesis of 5-heptadecyl- and 5-heptadec-8-enyl substituted 4-amino-1,2,4-triazole-3-thiol and 1,3,4-oxadiazole-2-thione from (Z)-octadec-9-enoic acid: preparation of Palladium(II) complexes and evaluation of their antimicrobial activity. Monatshefte $F\bar{A}\frac{1}{4}$ r Chemie, 2020, 151, 173-180.	1.8	6
38	Synergistic Effects of ppm Levels of Palladium on Natural Clinochlore for Reduction of Nitroarenes. ChemSusChem, 2019, 12, 4240-4248.	6.8	22
39	Palladium Nanoparticles on a Creatineâ€Modified Bentonite Support: An Efficient and Sustainable Catalyst for Nitroarene Reduction. ChemPlusChem, 2019, 84, 1122-1129.	2.8	11
40	Switching Diastereoselectivity in Catalytic Enantioselective (3+2) Cycloadditions of Azomethine Ylides Promoted by Metal Salts and Privileged Segphos-Derived Ligands. Journal of Organic Chemistry, 2019, 84, 10593-10605.	3.2	29
41	Synthesis and biological evaluation of platinum complexes of highly functionalized aroylaminocarbo-N-thioyl prolinate containing tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione moieties. Inorganica Chimica Acta, 2019, 498, 119154.	2.4	5
42	1-Butyl-3-methyl-2-(diphenylphosphino)imidazalolium hexafluorophosphate as an efficient ligand for recoverable palladium-catalyzed Suzuki-Miyaura reaction in neat water. Journal of Organometallic Chemistry, 2019, 901, 120941.	1.8	12
43	Diastereoselective multicomponent Amine-Aldehyde-Dienophile (AAD) process for the synthesis of polysubstituted cyclohex-2-enylamines. Tetrahedron, 2019, 75, 1315-1321.	1.9	2
44	Synthesis of 3-substituted 3-fluoro-2-oxindoles by deacylative alkylation. Organic and Biomolecular Chemistry, 2019, 17, 482-489.	2.8	7
45	A new bifunctional heterogeneous nanocatalyst for one-pot reduction-Schiff base condensation and reduction–carbonylation of nitroarenes. RSC Advances, 2019, 9, 1362-1372.	3.6	27
46	Starch functionalized creatine for stabilization of gold nanoparticles: Efficient heterogeneous catalyst for the reduction of nitroarenes. Inorganica Chimica Acta, 2019, 495, 118965.	2.4	23
47	Multilayer graphene functionalized through thermal 1,3-dipolar cycloadditions with imino esters: a versatile platform for supported ligands in catalysis. Chemical Communications, 2019, 55, 7462-7465.	4.1	10
48	1,3â€Dipolar Cycloadditions of Stabilized Azomethine Ylides and Electrophilic Alkenes Mediated by a Recyclable TSIL·AgOAc Catalyst. European Journal of Organic Chemistry, 2019, 2019, 4095-4100.	2.4	6
49	4-Amino-3-pentadecyl-3 <i>H</i> -1,2,4-triazole-3-thiones and 3-pentadecyl-1,3,4-oxadiazole-2(3 <i>H</i>)-thione for the preparation of dimeric palladium(II) complexes and their applications in Tsuji-Trost and Mizoroki-Heck reactions. Synthetic Communications, 2019, 49, 1301-1307.	2.1	10
50	Clinochloreâ€Supported Copper Nanoparticles as Green and Efficient Catalyst for Roomâ€Temperature Synthesis of 1,2,3â€Triazoles in Water. ChemistrySelect, 2019, 4, 3151-3160.	1.5	15
51	Recent Development in Palladium-Catalyzed Domino Reactions: Access to Materials and Biologically Important Carbo- and Heterocycles. Organometallics, 2019, 38, 1828-1867.	2.3	50
52	Proline derivatives incorporating hydrophobic long-chain derived from natural and synthetic fatty acids. Tetrahedron, 2019, 75, 1378-1386.	1.9	1
53	Enantioselective electrophilic fluorination of \hat{l} ±-aryl-tetralones using a preparation of N-fluoroammonium salts of cinchonine. Journal of Fluorine Chemistry, 2019, 217, 72-79.	1.7	9
54	Synthesis of pyrrolizidines and indolizidines by multicomponent 1,3-dipolar cycloaddition of azomethine ylides. Pure and Applied Chemistry, 2019, 91, 575-596.	1.9	30

#	Article	IF	Citations
55	From Bioactive Pyrrolidino [3,4-c] pyrrolidines to more Bioactive Pyrrolidino [3,4-b] pyrrolidines via Ring-Opening/Ring-Closing Promoted by Sodium Methoxide. Synthesis, 2019, 51, 1565-1577.	2.3	8
56	Deacylative Reactions: Synthetic Applications. European Journal of Organic Chemistry, 2018, 2018, 2394-2405.	2.4	13
57	Cooperative Catalysis with Coupled Chiral Induction in 1,3â€Dipolar Cycloadditions of Azomethine Ylides. Chemistry - A European Journal, 2018, 24, 8092-8097.	3.3	12
58	Palladium-catalyzed allylation and deacylative allylation of 3-acetyl-2-oxindoles with allylic alcohols. Tetrahedron, 2018, 74, 253-259.	1.9	6
59	Design and synthesis of novel 1,4-benzodiazepine surrogates as potential CCKA and CCKB antagonists via palladium-catalyzed three-component cascade reactions. Tetrahedron, 2018, 74, 6-11.	1.9	9
60	Study of the anti(myco)bacterial and antitumor activities of prolinate and N-amidocarbothiolprolinate derivatives based on fused tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione, bearing an indole ring. Monatshefte Für Chemie, 2018, 149, 2253-2263.	1.8	8
61	Deacylative alkylation (DaA) of N-methyl-3-acetyl-2-oxindole for the synthesis of symmetrically 3,3-disubstituted 2-oxindoles. An access gate to anticancer agents and natural products Anais Da Academia Brasileira De Ciencias, 2018, 90, 1089-1099.	0.8	6
62	Sequential Metal-Free Thermal 1,3-Dipolar Cycloaddition of Unactivated Azomethine Ylides. Organic Letters, 2018, 20, 3522-3526.	4.6	15
63	Diastereoselective Synthesis of Nitropyrrolizidines from Enantiopure exo- 4-Nitro-3,5-diphenylproline through 1,3-Dipolar Cycloadditions of non- Stabilized Azomethine Ylides. Letters in Organic Chemistry, 2018, 15, 431-440.	0.5	4
64	Current Trends towards the Synthesis of Bioactive Heterocycles and Natural Products Using 1,3-Dipolar Cycloadditions (1,3-DC) with Azomethine Ylides. Synthesis, 2017, 49, 2819-2851.	2.3	125
65	Diastereoselective $[3+2]$ vs $[4+2]$ Cycloadditions of Nitroprolinates with $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes and Electrophilic Alkenes: An Example of Total Periselectivity. Journal of Organic Chemistry, 2017, 82, 6298-6312.	3.2	14
66	Synthesis of highly functionalized 2-(pyrrolidin-1-yl)thiazole frameworks with interesting antibacterial and antimycobacterial activity. Tetrahedron, 2017, 73, 6718-6727.	1.9	19
67	Synthesis of pharmacophores containing a prolinate core using a multicomponent 1,3-dipolar cycloaddition of azomethine ylides. Tetrahedron, 2017, 73, 6840-6846.	1.9	6
68	Synthesis of 3,3-Disubstituted 2-Oxindoles by Deacylative Alkylation of 3-Acetyl-2-oxindoles. Synthesis, 2017, 49, 5203-5210.	2.3	8
69	Dual chiral silver catalyst in the synthetic approach to the core of hepatitis C virus inhibitor GSK 625433 using enantioselective 1,3-dipolar cycloaddition of azomethine ylides and electrophilic alkenes. Tetrahedron: Asymmetry, 2017, 28, 1423-1429.	1.8	5
70	Taniaphos·AgF-catalyzed enantioselective 1,3-dipolar cycloaddition of stabilized azomethine ylides derived from 2,2-dimethoxyacetaldehyde. Tetrahedron, 2016, 72, 6043-6051.	1.9	14
71	Binap and Phosphoramidites as Privileged Chiral Ligands for the Metalâ€Catalyzed Enantioselective 1,3â€Dipolar Cycloaddition of Azomethine Ylides. Chemical Record, 2016, 16, 2430-2448.	5.8	18
72	Reactivity of 1,2â€Diazaâ€1,3â€dienes with Azomethine Ylides: [3+4] versus [3+2] Cycloadditions. European Journal of Organic Chemistry, 2016, 2016, 4144-4151.	2.4	10

#	Article	IF	Citations
73	Heterocycle-based bifunctional organocatalysts in asymmetric synthesis. Pure and Applied Chemistry, 2016, 88, 561-578.	1.9	6
74	Multicomponent Diastereoselective Synthesis of Indolizidines via 1,3-Dipolar Cycloadditions of Azomethine Ylides. Synthesis, 2016, 49, 299-309.	2.3	3
7 5	Enantioselective Synthesis of Polysubstituted Spiro-nitroprolinates Mediated by a (R,R)-Me-DuPhosÂ-AgF-Catalyzed 1,3-Dipolar Cycloaddition. Organic Letters, 2016, 18, 2926-2929.	4.6	41
76	Bifunctional primary amine 2-aminobenzimidazole organocatalyst anchored to trans-cyclohexane-1,2-diamine in enantioselective conjugate additions of aldehydes. Tetrahedron: Asymmetry, 2016, 27, 118-122.	1.8	22
77	Palladium and Bimetallic Palladium–Nickel Nanoparticles Supported on Multiwalled Carbon Nanotubes: Application to CarbonCarbon Bondâ€Forming Reactions in Water. ChemCatChem, 2015, 7, 1841-1847.	3.7	49
78	Synthesis of Chromen[4,3â€ <i>b</i>)]pyrrolidines by Intramolecular 1,3â€Dipolar Cycloadditions of Azomethine Ylides: An Experimental and Computational Assessment of the Origin of Stereocontrol. European Journal of Organic Chemistry, 2015, 2015, 4689-4698.	2.4	17
79	Binap–silver-catalyzed enantioselective multicomponent 1,3-dipolar cycloaddition of azomethines ylides derived from ethyl glyoxylate. Tetrahedron: Asymmetry, 2015, 26, 674-678.	1.8	17
80	Remote Substituent Effects on the Stereoselectivity and Organocatalytic Activity of Densely Substituted Unnatural Proline Esters in Aldol Reactions. European Journal of Organic Chemistry, 2015, 2015, 2503-2516.	2.4	23
81	Pyrimidineâ€Derived Prolinamides as Recoverable Bifunctional Organocatalysts for Enantioselective Inter―and Intramolecular Aldol Reactions under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2015, 2015, 2614-2621.	2.4	17
82	1,3-Dipolar cycloadditions of azomethine imines. Organic and Biomolecular Chemistry, 2015, 13, 8596-8636.	2.8	203
83	Enantioselective Synthesis of exo-4-Nitroprolinates from NitroÂalkenes and Azomethine Ylides Catalyzed by Chiral PhosphorÂamidite·Silver(I) or Copper(II) Complexes. Synthesis, 2015, 47, 934-943.	2.3	23
84	Regio and diastereoselective multicomponent 1,3-dipolar cycloadditions between prolinate hydrochlorides, aldehydes and dipolarophiles for the direct synthesis of pyrrolizidines. Tetrahedron, 2015, 71, 9645-9661.	1.9	15
85	Primary Amine–2-Aminopyrimidine Chiral Organocatalysts for the Enantioselective Conjugate Addition of Branched Aldehydes to Maleimides. Synthesis, 2015, 47, 2199-2206.	2.3	24
86	Silver-catalysed multicomponent 1,3-dipolar cycloaddition of 2-oxoaldehydes-derived azomethine ylides. Tetrahedron, 2015, 71, 8804-8816.	1.9	13
87	Domino 1,3-Dipolar Cycloadditions of N-Alkyl-α-Amino Esters with Paraformaldehyde: A Direct Access to α-Hydroxymethyl α-Amino Acids. Synthesis, 2014, 46, 967-971.	2.3	8
88	Synthesis of \hat{l}_{\pm} , \hat{l}^2 -diamino acid derivatives via asymmetric Mannich reactions of glycine imino esters catalyzed by a chiral phosphoramidite \hat{A} -silver complex. Tetrahedron: Asymmetry, 2014, 25, 1647-1653.	1.8	15
89	Efficient Diastereo―and Enantioselective Synthesis of <i>exo</i> â€Nitroprolinates by 1,3â€Dipolar Cycloadditions Catalyzed by Chiral Phosphoramiditeâ <silver(i) 2014,="" 356,="" 3861-3870.<="" advanced="" and="" catalysis,="" complexes.="" synthesis="" td=""><td>4.3</td><td>28</td></silver(i)>	4.3	28
90	Coinage metal complexes as chiral catalysts for 1,3-dipolar cycloadditions. Journal of Organometallic Chemistry, 2014, 771, 78-78.	1.8	8

#	Article	IF	Citations
91	Asymmetric 1,3-Dipolar Cycloadditons of Stabilized Azomethine Ylides with Nitroalkenes. Current Topics in Medicinal Chemistry, 2014, 14, 1271-1282.	2.1	23
92	Multicomponent synthesis of unnatural pyrrolizidines using 1,3-dipolar cycloaddition of proline esters. Chemical Communications, 2013, 49, 11218.	4.1	14
93	Microwave-assisted multicomponent diastereoselective 1,3-dipolar cycloaddition of ethyl glyoxylate derived azomethine ylides. Organic and Biomolecular Chemistry, 2013, 11, 662-675.	2.8	31
94	Phosphoramidite–Cu(OTf)2 Complexes as Chiral Catalysts for 1,3-Dipolar Cycloaddition of Iminoesters and Nitroalkenes. Organic Letters, 2013, 15, 2902-2905.	4.6	64
95	Synthetic scope and DFT analysis of the chiral binap–gold(I) complex-catalyzed 1,3-dipolar cycloaddition of azlactones with alkenes. Beilstein Journal of Organic Chemistry, 2013, 9, 2422-2433.	2.2	7
96	Enantioselective 1,3-Dipolar Cycloadditions of Azlactones and Electrophilic Alkenes Catalyzed by Dimeric BinapAuTFA Complexes. Synlett, 2012, 2012, 62-65.	1.8	4
97	Binap-silver salts as chiral catalysts for the enantioselective 1,3-dipolar cycloaddition of azomethine ylides and alkenes. Tetrahedron: Asymmetry, 2012, 23, 1596-1606.	1.8	28
98	Kinetic Study of Thermal 1,3â€Dipolar Cycloaddition of Azomethine Ylides by Using Differential Scanning Calorimetry. ChemPlusChem, 2012, 77, 770-777.	2.8	6
99	A Biophotonic Sensor for the Specific Detection of DMMP Vapors at the ppb Level. Communications in Computer and Information Science, 2012, , 428-431.	0.5	O
100	MIND-BEST: Web Server for Drugs and Target Discovery; Design, Synthesis, and Assay of MAO-B Inhibitors and Theoreticalâ^'Experimental Study of G3PDH Protein from <i>Trichomonas gallinae</i> Journal of Proteome Research, 2011, 10, 1698-1718.	3.7	75
101	Chiral gold(I) vs chiral silver complexes as catalysts for the enantioselective synthesis of the second generation GSK-hepatitis C virus inhibitor. Beilstein Journal of Organic Chemistry, 2011, 7, 988-996.	2.2	29
102	Curtinâ€"Hammett versus non-Curtinâ€"Hammett frameworks in optimizing the enantioselective binolam/titanium(IV)-catalyzed cyanobenzoylation of aldehydes: Part 2. Tetrahedron: Asymmetry, 2011, 22, 1292-1305.	1.8	5
103	Mechanistic studies on the enantioselective BINOLAM/titanium(IV)-catalyzed cyanobenzoylation of aldehydes: Part 1. Tetrahedron: Asymmetry, 2011, 22, 1282-1291.	1.8	8
104	Enantioselective synthesis of proline derivatives by 1,3-dipolar cycloadditions. Monatshefte FÃ $^{1}\!\!/4$ r Chemie, 2011, 142, 659-680.	1.8	18
105	Binap–Gold(I) versus Binap–Silver Trifluoroacetate Complexes as Catalysts in 1,3â€Dipolar Cycloadditions of Azomethine Ylides. Chemistry - A European Journal, 2011, 17, 14224-14233.	3.3	45
106	Metal complexes versus organocatalysts in asymmetric 1,3-dipolar cycloadditions. Journal of the Brazilian Chemical Society, 2010, 21, 377-412.	0.6	91
107	Binap-gold(I) trifluoroacetate as a bifunctional catalyst for the synthesis of chiral prolines through 1,3-dipolar cycloaddition of azomethine ylides. Tetrahedron: Asymmetry, 2010, 21, 1184-1186.	1.8	38
108	BINAP-AgSbF6 vs. BINAP-AgClO4 Complexes as Catalysts for the Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes. Synlett, 2010, 2010, 962-966.	1.8	8

#	Article	IF	CITATIONS
109	Bifunctional Binols: Chiral 3,3′â€Bis(aminomethyl)â€1,1′â€biâ€2â€naphthols (Binolams) in Asymmetric Cat European Journal of Organic Chemistry, 2009, 2009, 2385-2400.	alysis.	41
110	Synthesis of Prolines by Enantioselective 1,3â€Dipolar Cycloaddition of Azomethine Ylides and Alkenes Catalyzed by Chiral Phosphoramiditeâ€Silver(I) Complexes. European Journal of Organic Chemistry, 2009, 2009, 5622-5634.	2.4	61
111	Asymmetric Intramolecular Carbocyanation of Alkenes by CC Bond Activation. Angewandte Chemie - International Edition, 2009, 48, 2452-2456.	13.8	140
112	1,3-Dipolar cycloadditions: applications to the synthesis of antiviral agents. Organic and Biomolecular Chemistry, 2009, 7, 4567.	2.8	132
113	Catalytic Enantioselective 1,3â€Dipolar Cycloaddition Reactions of Azomethine Ylides and Alkenes by Using Phosphoramidite–Silver(I) Complexes. Angewandte Chemie - International Edition, 2008, 47, 6055-6058.	13.8	120
114	Enantioselective synthesis of polysubstituted prolines by Binap-silver-catalyzed 1,3-dipolar cycloadditions. Tetrahedron: Asymmetry, 2008, 19, 2913-2923.	1.8	60
115	Enantioselective Cycloadditions of Azomethine Ylides. , 2008, , 117-145.		63
116	Solvent-Free Synthesis of Racemic α-Aminonitriles. Synthesis, 2007, 2007, 1230-1234.	2.3	6
117	Enantioenriched cyanohydrin O-phosphates: Synthesis and applications as chiral building blocks. Pure and Applied Chemistry, 2007, 79, 213-221.	1.9	17
118	Recoverable (R)- and (S)-Binapâ^'Ag(I) Complexes for the Enantioselective 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides§. Organic Letters, 2007, 9, 4025-4028.	4.6	105
119	Catalytic Asymmetric Synthesis of α-Amino Acids. Chemical Reviews, 2007, 107, 4584-4671.	47.7	698
120	SN2′ Alkylation of Chiral Allylic CyanohydrinO-Phosphates with Organocuprates. European Journal of Organic Chemistry, 2007, 2007, 1101-1112.	2.4	21
121	Diastereoselective 1,3â€Dipolar Cycloaddition Reactions between Azomethine Ylides and Chiral Acrylates Derived from Methyl (⟨i⟩S⟨ i⟩)―and (⟨i⟩R⟨ i⟩)â€Lactate – Synthesis of Hepatitis C Virus RNAâ€Dependent RNA Polymerase Inhibitors. European Journal of Organic Chemistry, 2007, 2007, 5038-5049.	2.4	39
122	Diastereoselective and Enantiospecific Synthesis of \hat{I}^3 -Substituted \hat{I}_{\pm} , \hat{I}^2 -Unsaturated Nitriles from O-Protected Allylic Cyanohydrins. Journal of Organic Chemistry, 2006, 71, 3837-3848.	3.2	30
123	1,3-Dipolar cycloadditions of azomethine ylides with chiral acrylates derived from methyl (S)- and (R)-lactate: diastereo- and enantioselective synthesis of polysubstituted prolines. Tetrahedron: Asymmetry, 2006, 17, 1985-1989.	1.8	20
124	Catalytic Enantioselective 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides and Alkenes: The Direct Strategy to Prepare Enantioenriched Highly Substituted Proline Derivatives. ChemInform, 2006, 37, no.	0.0	0
125	Enantioselective Synthesis of O-Methoxycarbonyl Cyanohydrins: Chiral Building Blocks Generated by Bifunctional Catalysis with BINOLAM-AlCl. European Journal of Organic Chemistry, 2006, 2006, 1949-1958.	2.4	41
126	Asymmetric synthesis of O-benzoyl cyanohydrins by reaction of aldehydes with benzoyl cyanide catalysed by BINOLAM–Ti(IV) complexes. Tetrahedron: Asymmetry, 2005, 16, 2385-2389.	1.8	45

#	Article	IF	CITATIONS
127	Catalytic Enantioselective 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides and Alkenes: The Direct Strategy To Prepare Enantioenriched Highly Substituted Proline Derivatives. Angewandte Chemie - International Edition, 2005, 44, 6272-6276.	13.8	285
128	Binolam-AlCl: A Two-Centre Catalyst for the Synthesis of Enantioenriched CyanohydrinO-Phosphates. Chemistry - A European Journal, 2005, 11, 3849-3862.	3.3	53
129	Enantioselective Addition of Trimethylsilyl Cyanide to Aldehydes Catalyzed by Bifunctional BINOLAM-AlCl versus Monofunctional BINOL-AlCl Complexes ChemInform, 2005, 36, no.	0.0	O
130	Asymmetric Synthesis of O-Benzoyl Cyanohydrins by Reaction of Aldehydes with Benzoyl Cyanide Catalyzed by BINOLAMâ€"Ti(IV) Complexes Chemlnform, 2005, 36, no.	0.0	0
131	Solvent-Free Synthesis of Cyanohydrin Derivatives Catalysed by Triethylamine. Synthesis, 2005, 2005, 2787-2797.	2.3	5
132	Solvent-free synthesis of racemic cyanohydrin O-phosphates. Arkivoc, 2005, 2005, 353-363.	0.5	12
133	Enantioselective addition of trimethylsilyl cyanide to aldehydes catalysed by bifunctional BINOLAM-AICI versus monofunctional BINOL-AICI complexes. Tetrahedron, 2004, 60, 10487-10496.	1.9	57
134	Recent Synthetic Uses of Functionalized Aromatic and Heteroaromatic Organolithium Reagents Prepared by Non-Deprotonating Methods. ChemInform, 2004, 35, no.	0.0	1
135	Title is missing!. Angewandte Chemie, 2003, 115, 3251-3254.	2.0	14
136	Synthetic Applications of o- and p-Halobenzyl Sulfones as Zwitterionic Synthons: Preparation of ortho-Substituted Cinnamates and Biarylacetic Acids ChemInform, 2003, 34, no.	0.0	0
137	Enantioselective Cyanoformylation of Aldehydes Mediated by BINOLAM—AlCl as a Monometallic Bifunctional Catalyst ChemInform, 2003, 34, no.	0.0	0
138	Enantioselective Synthesis of Cyanohydrin O-Phosphates Mediated by the Bifunctional Catalyst Binolamâ€"AlCl ChemInform, 2003, 34, no.	0.0	0
139	Enantioselective Synthesis of Cyanohydrin O-Phosphates Mediated by the Bifunctional Catalyst Binolam–AlCl. Angewandte Chemie - International Edition, 2003, 42, 3143-3146.	13.8	78
140	Recent synthetic uses of functionalised aromatic and heteroaromatic organolithium reagents prepared by non-deprotonating methods. Tetrahedron, 2003, 59, 9255-9303.	1.9	139
141	Enantioselective cyanoformylation of aldehydes mediated by BINOLAM–AlCl as a monometallic bifunctional catalyst. Tetrahedron: Asymmetry, 2003, 14, 197-200.	1.8	87
142	Azomethine Ylides in Organic Synthesis. Current Organic Chemistry, 2003, 7, 1105-1150.	1.6	277
143	Synthetic Applications ofo-andp-Halobenzyl Sulfones as Zwitterionic Synthons:Â Preparation of Ortho-Substituted Cinnamates and Biarylacetic Acids. Journal of Organic Chemistry, 2002, 67, 5216-5225.	3.2	45
144	BINOLAM, a Recoverable Chiral Ligand for Bifunctional Enantioselective Catalysis:  The Asymmetric Synthesis of Cyanohydrinsâ€. Organic Letters, 2002, 4, 2589-2592.	4.6	109

#	Article	IF	Citations
145	Palladium catalysed tandem cyclisation–anion capture. Part 7: Synthesis of derivatives of α-amino esters, nitrogen heterocycles and β-aryl/heteroaryl ethylamines via in situ generated vinylstannanes. Tetrahedron, 2001, 57, 607-615.	1.9	34
146	Enantioselective synthesis of (S)- $\hat{1}$ ±-methylphenylalanine using (S)-BINOLAMs as new phase-transfer catalysts. Tetrahedron: Asymmetry, 2001, 12, 699-702.	1.8	36
147	Convergent asymmetric synthesis of indolizidines from (S)-5-(tosylmethyl)-2-pyrrolidinone: synthesis of (â^')-l'-coniceine. Tetrahedron: Asymmetry, 2001, 12, 2205-2211.	1.8	19
148	Palladium catalysed queuing processes. Part 2:. Tetrahedron, 2001, 57, 1361-1367.	1.9	36
149	Asymmetric synthesis of \hat{l} ±-amino acids from \hat{l} ±, \hat{l} 2-(Z)-didehydroamino acid derivatives with 1,2,3,6-tetrahydropyrazin-2-one structure. Tetrahedron, 2001, 57, 6627-6640.	1.9	32
150	New oxazinone and pyrazinone derivatives as chiral reagents for the asymmetric synthesis of αâ€amino acids. Journal of Heterocyclic Chemistry, 2000, 37, 467-479.	2.6	22
151	Palladium Catalysed Tandem Cyclisation–Anion Capture Processes. Part 4: Organotin(IV) Transfer Agents. Tetrahedron, 2000, 56, 7525-7539.	1.9	93
152	Chiral (Z)-α,β-didehydroamino acid derivatives from a new chiral glycine equivalent with a 1,2,3,6-tetrahydropyrazin-2-one structure: applications to the synthesis of 1-aminocyclopropanecarboxylic acids and bicyclic α-amino acids. Tetrahedron: Asymmetry, 2000, 11, 1051-1055.	1.8	15
153	Palladium Catalysed Tandem Cyclisation–Anion Capture. Part 5: Cascade Hydrostannylation-bis-cyclisation-intramolecular Anion Capture. Synthesis of Bridged- and Spiro-Cyclic Small and Macrocyclic Heterocycles. Tetrahedron, 2000, 56, 7541-7551.	1.9	32
154	Palladium Catalysed Tandem Cyclisation–Anion Capture. Part 6: Synthesis of Sugar, Nucleoside, Purine, Benzodiazepinone and β-lactam Analogues via Capture of in situ Generated Vinylstannanes. Tetrahedron, 2000, 56, 7553-7560.	1.9	31
155	New chiral alanine template with a 1,2,3,6-tetrahydro-2-pyrazinone structure for the asymmetric synthesis of α-methyl α-amino acids. Tetrahedron: Asymmetry, 1998, 9, 2211-2214.	1.8	38
156	Simple and Efficient Synthesis of the Acetylene Equivalent (<i>E</i>)-1-Benzenesulfonyl-2-(trimethylsilyl)ethylene. Synthetic Communications, 1997, 27, 1111-1114.	2.1	5
157	Palladium catalysed tandem cyclisation-anion capture processes. Part 3. Organoboron anion transfer agents. Tetrahedron, 1997, 53, 11803-11826.	1.9	136
158	Sequential hydrostannylation-cyclisation of \hat{l} - and \hat{l} %-allenyl aryl halides. Cyclisation at the proximal carbon. Tetrahedron, 1996, 52, 13441-13454.	1.9	43
159	Palladium catalysed cascade hydrostannylation-bis-cyclisation-intramolecular anion capture. Routes to bridged- and spiro-cyclic small and macrocyclic heterocycles. Tetrahedron Letters, 1996, 37, 4413-4416.	1.4	26
160	Synthesis of 3- and 4-substituted cyclic \hat{l} ±-amino acids structurally related to ACPD. Tetrahedron, 1995, 51, 10259-10280.	1.9	22
161	One-Pot Iodosulfonylation Dehydroiodination of Alkenes: (E)-beta-Tosylstyrene: An Experiment for Undergraduate Organic Chemistry Laboratory. Journal of Chemical Education, 1995, 72, 664.	2.3	13
162	A general method for the synthesis of 2-alkyl substituted 1,3-dienes starting from 2-(chloromethyl)-3-tosylpropene. Tetrahedron, 1994, 50, 5829-5844.	1.9	12

#	Article	IF	Citations
163	Dilithiated 2-(Chloromethyl)-3-tosylpropene: A New \hat{I}^3 -Chlorinated Allyl Sulfone Dianion in Organic Synthesis. Tetrahedron, 1994, 50, 3491-3508.	1.9	9
164	Tosylated lithium 2-(lithiomethyl)-2-propen-1-olate: a γ-alkoxide allyl sulfone anion in organic synthesis. Tetrahedron, 1994, 50, 6603-6620.	1.9	16
165	2-(chloromethyl)-3-tosylpropene as useful reagent for the general synthesis of functionalized 2-substituted 1,3-dienes. Application to the synthesis of $(A\pm)$ -ipsenol. Tetrahedron Letters, 1993, 34, 3781-3784.	1.4	17
166	Dilithiation of 2-(chloromethyl)-3-tosylpropene: Synthesis and reactivity of a new chlorinated allyl sulfone dianion. Tetrahedron Letters, 1992, 33, 6543-6546.	1.4	17
167	2-(Chloromethyl)-3-tosylpropene: An useful reagent for the synthesis of allyl sulfones. Tetrahedron, 1992, 48, 5179-5190.	1.9	13
168	A simple method for the synthesis of \hat{l}^3 -functionalized vinyl and allyl sulfones. Tetrahedron, 1991, 47, 6337-6352.	1.9	11
169	\hat{l}^2 , \hat{l}^3 -efoxy sulfones in organic synthesis. Part 2: Preparation of \hat{l}^2 , \hat{l}^3 -bifunctionalized sulfones. Tetrahedron, 1991, 47, 5193-5202.	1.9	28
170	Synthesis of \hat{l}^2 - and \hat{l}^3 -hydroxy sulfones by regioselective opening of \hat{l}^2 , \hat{l}^3 -epoxy sulfones. Tetrahedron, 1990, 46, 3993-4002.	1.9	16
171	Fe-MIL-101 modified by isatin-Schiff-base-Co: A heterogeneous catalyst for the C-C, C-O, C-N, and C-P cross coupling reactions. New Journal of Chemistry, 0, , .	2.8	6
172	Photocatalytic Homocoupling Transformations. Synthesis, 0, 53, .	2.3	1
173	Binap-gold(I) vs Binap-silver trifluoroacetate complexes as catalysts in 1,3-dipolar cycloadditions of azomethine ylides. , 0 , , .		0