Zheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046148/publications.pdf

Version: 2024-02-01

41344 48315 8,625 118 49 88 citations h-index g-index papers 141 141 141 7432 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Simple Approach to Achieve Organic Radicals with Unusual Solid-State Emission and Persistent Stability. CCS Chemistry, 2022, 4, 1912-1920.	7.8	20
2	Metallophilicity-Induced Clusterization: Single-Component White-Light Clusteroluminescence with Stimulus Response. CCS Chemistry, 2022, 4, 2570-2580.	7.8	17
3	How do molecular interactions affect fluorescence behavior of AIEgens in solution and aggregate states?. Science China Chemistry, 2022, 65, 135-144.	8.2	31
4	Molecular core–shell structure design: Facilitating delayed fluorescence in aggregates toward highly efficient solutionâ€processed OLEDs. Aggregate, 2022, 3, .	9.9	33
5	Unveiling the crucial contributions of electrostatic and dispersion interactions to the ultralong room-temperature phosphorescence of H-bond crosslinked poly(vinyl alcohol) films. Materials Horizons, 2022, 9, 1081-1088.	12.2	42
6	Yolk-shell Ni/NiO anchored on N-doped graphene synthesized as dual-ion MALDI matrix for detecting and imaging bioactive small molecules. Journal of Colloid and Interface Science, 2022, 613, 285-296.	9.4	8
7	Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motionâ€Induced Photoâ€Hyperthermia for Cancer Therapy. Advanced Science, 2022, 9, e2104885.	11.2	34
8	Oneâ€Pot Synthesis of Customized Metal–Phenolicâ€Networkâ€Coated AIE Dots for In Vivo Bioimaging. Advanced Science, 2022, 9, e2104997.	11.2	20
9	Deep-Red Aggregation-Induced Emission Luminogen Based on Dithiofuvalene-Fused Benzothiadiazole for Lipid Droplet-Specific Imaging., 2022, 4, 159-164.		28
10	Organic photosensitizers for antimicrobial phototherapy. Chemical Society Reviews, 2022, 51, 3324-3340.	38.1	139
11	In Situ Electrospinning of Aggregationâ€Induced Emission Nanofibrous Dressing for Wound Healing. Small Methods, 2022, 6, e2101247.	8.6	57
12	Solutionâ€processed AlEgen NIR OLEDs with EQE Approaching 15 %. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
13	Solutionâ€processed AlEgen NIR OLEDs with EQE Approaching 15 %. Angewandte Chemie, 2022, 134, .	2.0	5
14	A brightly red emissive AlEgen and its antibody conjugated nanoparticles for cancer cell targeting imaging. Materials Chemistry Frontiers, 2022, 6, 1317-1323.	5.9	6
15	A cell membrane-targeting AIE photosensitizer as a necroptosis inducer for boosting cancer theranostics. Chemical Science, 2022, 13, 5929-5937.	7.4	40
16	Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angewandte Chemie - International Edition, 2022, 61, .	13.8	88
17	Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angewandte Chemie, 2022, 134, .	2.0	9
18	Natural products with aggregation-induced emission properties: from discovery to their multifunctional applications. Scientia Sinica Chimica, 2022, 52, 1524-1546.	0.4	10

#	Article	IF	Citations
19	Achieving diversified emissive behaviors of AIE, TADF, RTP, dual-RTP and mechanoluminescence from simple organic molecules by positional isomerism. Journal of Materials Chemistry C, 2022, 10, 10009-10016.	5.5	11
20	Vision Defense: Efficient Antibacterial AlEgens Induced Early Immune Response for Bacterial Endophthalmitis. Advanced Science, 2022, 9, .	11.2	24
21	AlEgens in Solar Energy Utilization: Advances and Opportunities. Langmuir, 2022, 38, 8719-8732.	3.5	6
22	Mechanistic connotations of restriction of intramolecular motions (RIM). National Science Review, 2021, 8, nwaa260.	9.5	119
23	Revisiting an ancient inorganic aggregationâ€induced emission system: An enlightenment to clusteroluminescence. Aggregate, 2021, 2, e36.	9.9	40
24	A divergent and stereoselective synthetic strategy for tetraarylethylene-based AlEgens. National Science Review, 2021, 8, nwab015.	9.5	5
25	Turning on Light Emission of a Dark Proâ€Aggregationâ€Induced Emission Luminogen in Aqueous Media Through Reductaseâ€Modulated Derotation. Advanced NanoBiomed Research, 2021, 1, 2000080.	3.6	12
26	Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis. Nature Communications, 2021, 12, 960.	12.8	62
27	Aggregate Science: Much to Explore in the Meso World. Matter, 2021, 4, 338-349.	10.0	74
28	BioAlEgens derived from rosin: how does molecular motion affect their photophysical processes in solid state? Nature Communications, 2021, 12, 1773.	12.8	62
29	AIE study: a stepping stone to aggregate science. National Science Review, 2021, 8, nwab079.	9.5	10
30	Antiviral and Antiâ€Inflammatory Treatment with Multifunctional Alveolar Macrophageâ€Like Nanoparticles in a Surrogate Mouse Model of COVIDâ€19. Advanced Science, 2021, 8, 2003556.	11.2	24
31	Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes. Journal of the American Chemical Society, 2021, 143, 9468-9477.	13.7	52
32	Tailoring Noncovalent Interactions to Activate Persistent Roomâ€Temperature Phosphorescence from Doped Polyacrylonitrile Films. Advanced Functional Materials, 2021, 31, 2101656.	14.9	83
33	Single-fluorogen polymers with color-tunable aggregation-induced emission. Matter, 2021, 4, 2587-2589.	10.0	7
34	Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms. Nanoscale, 2021, 13, 13610-13616.	5.6	15
35	Vision redemption: Self-reporting AlEgens for combined treatment of bacterial keratitis. Biomaterials, 2021, 279, 121227.	11.4	15
36	Aggregate Materials beyond AlEgens. Accounts of Materials Research, 2021, 2, 1251-1260.	11.7	35

#	Article	IF	CITATIONS
37	Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.	14.2	407
38	AIE-based energy transfer systems for biosensing, imaging, and therapeutics. TrAC - Trends in Analytical Chemistry, 2020, 122, 115743.	11.4	44
39	Aggregate Science: From Structures to Properties. Advanced Materials, 2020, 32, e2001457.	21.0	254
40	Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AlEgens. Chemical Science, 2020, 11, 8438-8447.	7.4	32
41	An Intelligent AlEgen with Nonmonotonic Multiresponses to Multistimuli. Advanced Science, 2020, 7, 2001845.	11.2	34
42	Targeted Theranostics for Tuberculosis: A Rifampicin-Loaded Aggregation-Induced Emission Carrier for Granulomas Tracking and Anti-Infection. ACS Nano, 2020, 14, 8046-8058.	14.6	35
43	Visualizing semipermeability of the cell membrane using a pH-responsive ratiometric AlEgen. Chemical Science, 2020, 11, 5753-5758.	7.4	26
44	Endowing TADF luminophors with AIE properties through adjusting flexible dendrons for highly efficient solution-processed nondoped OLEDs. Chemical Science, 2020, 11, 7194-7203.	7.4	74
45	AlEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2297-2329.	11.7	39
46	Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132, 9972-9993.	2.0	96
47	Aggregationâ€Induced Emission: New Vistas at the Aggregate Level. Angewandte Chemie - International Edition, 2020, 59, 9888-9907.	13.8	821
48	Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. Journal of the American Chemical Society, 2020, 142, 3959-3969.	13.7	143
49	Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials, 2020, 238, 119834.	11.4	48
50	A visible-light-induced "on–off―one-pot synthesis of 3-arylacetylene coumarins with AIE properties. Organic and Biomolecular Chemistry, 2020, 18, 3346-3353.	2.8	17
51	Circularly polarized luminescence from AlEgens. Journal of Materials Chemistry C, 2020, 8, 3284-3301.	5.5	141
52	Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. Journal of the American Chemical Society, 2019, 141, 15111-15120.	13.7	155
53	Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process. Nature Communications, 2019, 10, 2952.	12.8	125
54	Atomic Fe hetero-layered coordination between g-C ₃ N ₄ and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 1451-1458.	10.3	70

#	Article	IF	Citations
55	Molecular Motion in the Solid State. , 2019, 1, 425-431.		71
56	Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano, 2019, 13, 11283-11293.	14.6	199
57	Molecular Transmission: Visible and Rate-Controllable Photoreactivity and Synergy of Aggregation-Induced Emission and Host–Guest Assembly. Chemistry of Materials, 2019, 31, 1092-1100.	6.7	46
58	A New Strategy toward "Simple―Waterâ€Soluble AIE Probes for Hypoxia Detection. Advanced Functional Materials, 2019, 29, 1903278.	14.9	58
59	Ratiometric Detection of Mitochondrial Thiol with a Two-Photon Active AlEgen. ACS Applied Bio Materials, 2019, 2, 3120-3127.	4.6	26
60	AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 2019, 9, 3223-3248.	10.0	116
61	Robust Serum Albumin-Responsive AlEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17306-17312.	8.0	32
62	AIE Featured Inorganic–Organic Core@Shell Nanoparticles for High-Efficiency siRNA Delivery and Real-Time Monitoring. Nano Letters, 2019, 19, 2272-2279.	9.1	58
63	Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nature Communications, 2019, 10, 768.	12.8	296
64	Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nature Communications, 2019, 10, 5161.	12.8	216
65	Photoresponsive spiro-polymers generated in situ by C–H-activated polyspiroannulation. Nature Communications, 2019, 10, 5483.	12.8	46
66	Bioâ€orthogonal AIE Dots Based on Polyyneâ€Bridged Redâ€emissive AIEgen for Tumor Metabolic Labeling and Targeted Imaging. Chemistry - an Asian Journal, 2019, 14, 770-774.	3.3	13
67	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€Switchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie - International Edition, 2018, 57, 5011-5015.	13.8	7 3
68	Highly Efficient Circularly Polarized Electroluminescence from Aggregationâ€Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800051.	14.9	302
69	Facile Multicomponent Polymerizations toward Unconventional Luminescent Polymers with Readily Openable Small Heterocycles. Journal of the American Chemical Society, 2018, 140, 5588-5598.	13.7	116
70	Rational Design of Perylenediimideâ€Substituted Triphenylethylene to Electron Transporting Aggregationâ€Induced Emission Luminogens (AlEgens) with High Mobility and Nearâ€Infrared Emission. Advanced Functional Materials, 2018, 28, 1705609.	14.9	82
71	Monomer stoichiometry imbalance-promoted formation of multisubstituted polynaphthalenes by palladium-catalyzed polycouplings of aryl iodides and internal diynes. Polymer Chemistry, 2018, 9, 885-893.	3.9	14
72	Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. Analytical Chemistry, 2018, 90, 1063-1067.	6.5	70

#	Article	IF	Citations
73	Multiple yet Controllable Photoswitching in a Single AlEgen System. Journal of the American Chemical Society, 2018, 140, 1966-1975.	13.7	209
74	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€Switchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie, 2018, 130, 5105-5109.	2.0	63
75	In Situ Generation of Red-Emissive AlEgens from Commercial Sources for Nondoped OLEDs. ACS Omega, 2018, 3, 16347-16356.	3.5	19
76	Dual-Ion-Mode MALDI MS Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O—P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O—P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O—P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O—P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Detection of Small Molecules with the O—P,N-Doped Carbon/Graphene Matrix and Detection of Small Molecules with the O—P,N-Doped Carbon/Graphene Matrix and Detection of Small Molecules with the O—P,N-Doped Carbon of Small Molecules	8.0	43
77	The improvement of pitch activation by graphene for long-cycle Li–S batteries. Green Chemistry, 2018, 20, 4675-4683.	9.0	14
78	Detecting live bacteria instantly utilizing AIE strategies. Journal of Materials Chemistry B, 2018, 6, 5986-5991.	5.8	25
79	A Bifunctional Aggregationâ€Induced Emission Luminogen for Monitoring and Killing of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2018, 28, 1804632.	14.9	105
80	The unusual aggregation-induced emission of coplanar organoboron isomers and their lipid droplet-specific applications. Materials Chemistry Frontiers, 2018, 2, 1498-1507.	5.9	61
81	Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chemical Science, 2018, 9, 5679-5687.	7.4	119
82	The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO ₂ electrocatalyst. Green Chemistry, 2018, 20, 3521-3529.	9.0	43
83	Exploration of biocompatible AlEgens from natural resources. Chemical Science, 2018, 9, 6497-6502.	7.4	167
84	Facile access to deep red/near-infrared emissive AlEgens for efficient non-doped OLEDs. Chemical Science, 2018, 9, 6118-6125.	7.4	101
85	Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. Nature Communications, 2018, 9, 3044.	12.8	203
86	New Ï€â€Extended Naphthalene Diimides for Highâ€Performance nâ€Type Organic Semiconductors with NIR Absorption Properties. Asian Journal of Organic Chemistry, 2018, 7, 2279-2284.	2.7	10
87	A Substitutionâ€Dependent Lightâ€Up Fluorescence Probe for Selectively Detecting Fe ³⁺ lons and Its Cell Imaging Application. Advanced Functional Materials, 2018, 28, 1802833.	14.9	62
88	Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie - International Edition, 2018, 57, 7997-8001.	13.8	224
89	Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie, 2018, 130, 8129-8133.	2.0	72
90	Redox-Active AlEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging. Journal of the American Chemical Society, 2018, 140, 6904-6911.	13.7	112

#	Article	IF	Citations
91	Ultrasensitive Virion Immunoassay Platform with Dual-Modality Based on a Multifunctional Aggregation-Induced Emission Luminogen. ACS Nano, 2018, 12, 9549-9557.	14.6	87
92	A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. Research, 2018, 2018, 3152870.	5.7	86
93	Polyyne bridged AIE luminogens with red emission: design, synthesis, properties and applications. Journal of Materials Chemistry B, 2017, 5, 1650-1657.	5.8	50
94	Furan Is Superior to Thiophene: A Furanâ€Cored AlEgen with Remarkable Chromism and OLED Performance. Advanced Science, 2017, 4, 1700005.	11.2	94
95	Highly Sensitive Naked-Eye Assay for Enterovirus 71 Detection Based on Catalytic Nanoparticle Aggregation and Immunomagnetic Amplification. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14691-14699.	8.0	27
96	Synthesis of largely Ï€-extended naphthalenediimides via Câ€"H activation towards highly soluble and narrow band-gap organic optoelectronic materials. Organic Chemistry Frontiers, 2017, 4, 823-827.	4.5	12
97	Atomic Fe Embedded in Carbon Nanoshells–Graphene Nanomeshes with Enhanced Oxygen Reduction Reaction Performance. Chemistry of Materials, 2017, 29, 9915-9922.	6.7	64
98	Three-Dimensional Framework of Graphene Nanomeshes Shell/Co ₃ O ₄ Synthesized as Superior Bifunctional Electrocatalyst for Zincâ€"Air Batteries. ACS Applied Materials & & & & & & & & & & & & & & & & & & &	8.0	42
99	Novel Dimethylmethyleneâ€Bridged Triphenylamineâ€PDI Acceptor for Bulkâ€Heterojunction Organic Solar Cells. Advanced Science, 2017, 4, 1700110.	11.2	30
100	Identifying and functionally characterizing tissue-specific and ubiquitously expressed human lncRNAs. Oncotarget, 2016, 7, 7120-7133.	1.8	114
101	Identification and characterization of IncRNA mediated transcriptional dysregulation dictates IncRNA roles in glioblastoma. Oncotarget, 2016, 7, 45027-45041.	1.8	48
102	Incorporation of benzothiadiazole into the backbone of 1,2,5,6-naphthalenediimide based copolymers, enabling much improved film crystallinity and charge carrier mobility. Polymer Chemistry, 2016, 7, 573-579.	3.9	28
103	Construction and analysis of dynamic transcription factor regulatory networks in the progression of glioma. Scientific Reports, 2015, 5, 15953.	3.3	27
104	Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	107
105	Genome-Wide Methylome Analyses Reveal Novel Epigenetic Regulation Patterns in Schizophrenia and Bipolar Disorder. BioMed Research International, 2015, 2015, 1-15.	1.9	22
106	Carbazolo [2,1-a] carbazole Diimide: A Building Block for Organic Electronic Materials. ChemPlusChem, 2015, 80, 57-61.	2.8	10
107	Cascade Polyannulation of Diyne and Benzoylacetonitrile: A New Strategy for Synthesizing Functional Substituted Poly(naphthopyran)s. Macromolecules, 2015, 48, 4241-4249.	4.8	40
108	High mobility organic semiconductors for field-effect transistors. Science China Chemistry, 2015, 58, 947-968.	8.2	129

#	Article	IF	CITATIONS
109	LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns. Oncotarget, 2015, 6, 39793-39805.	1.8	38
110	PD_NGSAtlas: a reference database combining next-generation sequencing epigenomic and transcriptomic data for psychiatric disorders. BMC Medical Genomics, 2014, 7, 71.	1.5	9
111	Tuning the Charge Transport Property of Naphthalene Diimide Derivatives by Changing the Substituted Position of Fluorine Atom on Molecular Backbone. Chinese Journal of Chemistry, 2014, 32, 1057-1064.	4.9	9
112	Naphthalenediimides Fused with 2-(1,3-Dithiol-2-ylidene)acetonitrile: Strong Electron-Deficient Building Blocks for High-Performance n-Type Polymeric Semiconductors. ACS Macro Letters, 2014, 3, 1174-1177.	4.8	39
113	1,2,5,6-Naphthalenediimide Based Donor–Acceptor Copolymers Designed from Isomer Chemistry for Organic Semiconducting Materials. Macromolecules, 2013, 46, 7705-7714.	4.8	56
114	Tetracyanodibenzotetrathiafulvalene Diimides: Design, Synthesis, and Property Study. Journal of Organic Chemistry, 2013, 78, 12214-12219.	3.2	8
115	Integrating Knowledge in Search of Biologically Relevant Genes. , 2009, , .		0
116	Adaptive Distance Metric Learning for Clustering. , 2007, , .		80
117	A Context Aware Automatic Traffic Notification System for Cell Phones. , 2007, , .		3
118	One-Step Solid-Phase Extraction Procedure for F2-Isoprostanes. Clinical Chemistry, 2001, 47, 1306-1308.	3.2	28