Zheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5046148/publications.pdf Version: 2024-02-01

ZHENC ZHAO

#	Article	IF	CITATIONS
1	Aggregationâ€Induced Emission: New Vistas at the Aggregate Level. Angewandte Chemie - International Edition, 2020, 59, 9888-9907.	13.8	821
2	Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.	14.2	407
3	Highly Efficient Circularly Polarized Electroluminescence from Aggregationâ€Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800051.	14.9	302
4	Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nature Communications, 2019, 10, 768.	12.8	296
5	Aggregate Science: From Structures to Properties. Advanced Materials, 2020, 32, e2001457.	21.0	254
6	Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie - International Edition, 2018, 57, 7997-8001.	13.8	224
7	Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nature Communications, 2019, 10, 5161.	12.8	216
8	Multiple yet Controllable Photoswitching in a Single AIEgen System. Journal of the American Chemical Society, 2018, 140, 1966-1975.	13.7	209
9	Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. Nature Communications, 2018, 9, 3044.	12.8	203
10	Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano, 2019, 13, 11283-11293.	14.6	199
11	Exploration of biocompatible AlEgens from natural resources. Chemical Science, 2018, 9, 6497-6502.	7.4	167
12	Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. Journal of the American Chemical Society, 2019, 141, 15111-15120.	13.7	155
13	Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. Journal of the American Chemical Society, 2020, 142, 3959-3969.	13.7	143
14	Circularly polarized luminescence from AIEgens. Journal of Materials Chemistry C, 2020, 8, 3284-3301.	5.5	141
15	Organic photosensitizers for antimicrobial phototherapy. Chemical Society Reviews, 2022, 51, 3324-3340.	38.1	139
16	High mobility organic semiconductors for field-effect transistors. Science China Chemistry, 2015, 58, 947-968.	8.2	129
17	Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process. Nature Communications, 2019, 10, 2952.	12.8	125
18	Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chemical Science, 2018, 9, 5679-5687.	7.4	119

#	Article	IF	CITATIONS
19	Mechanistic connotations of restriction of intramolecular motions (RIM). National Science Review, 2021, 8, nwaa260.	9.5	119
20	Facile Multicomponent Polymerizations toward Unconventional Luminescent Polymers with Readily Openable Small Heterocycles. Journal of the American Chemical Society, 2018, 140, 5588-5598.	13.7	116
21	AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 2019, 9, 3223-3248.	10.0	116
22	Identifying and functionally characterizing tissue-specific and ubiquitously expressed human IncRNAs. Oncotarget, 2016, 7, 7120-7133.	1.8	114
23	Redox-Active AIEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging. Journal of the American Chemical Society, 2018, 140, 6904-6911.	13.7	112
24	Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	107
25	A Bifunctional Aggregationâ€Induced Emission Luminogen for Monitoring and Killing of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2018, 28, 1804632.	14.9	105
26	Facile access to deep red/near-infrared emissive AlEgens for efficient non-doped OLEDs. Chemical Science, 2018, 9, 6118-6125.	7.4	101
27	Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132, 9972-9993.	2.0	96
28	Furan Is Superior to Thiophene: A Furanâ€Cored AlEgen with Remarkable Chromism and OLED Performance. Advanced Science, 2017, 4, 1700005.	11.2	94
29	Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angewandte Chemie - International Edition, 2022, 61, .	13.8	88
30	Ultrasensitive Virion Immunoassay Platform with Dual-Modality Based on a Multifunctional Aggregation-Induced Emission Luminogen. ACS Nano, 2018, 12, 9549-9557.	14.6	87
31	A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. Research, 2018, 2018, 3152870.	5.7	86
32	Tailoring Noncovalent Interactions to Activate Persistent Roomâ€Temperature Phosphorescence from Doped Polyacrylonitrile Films. Advanced Functional Materials, 2021, 31, 2101656.	14.9	83
33	Rational Design of Perylenediimideâ€6ubstituted Triphenylethylene to Electron Transporting Aggregationâ€Induced Emission Luminogens (AlEgens) with High Mobility and Nearâ€Infrared Emission. Advanced Functional Materials, 2018, 28, 1705609.	14.9	82
34	Adaptive Distance Metric Learning for Clustering. , 2007, , .		80
35	Endowing TADF luminophors with AIE properties through adjusting flexible dendrons for highly efficient solution-processed nondoped OLEDs. Chemical Science, 2020, 11, 7194-7203.	7.4	74
36	Aggregate Science: Much to Explore in the Meso World. Matter, 2021, 4, 338-349.	10.0	74

#	Article	IF	CITATIONS
37	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€&witchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie - International Edition, 2018, 57, 5011-5015.	13.8	73
38	Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie, 2018, 130, 8129-8133.	2.0	72
39	Molecular Motion in the Solid State. , 2019, 1, 425-431.		71
40	Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. Analytical Chemistry, 2018, 90, 1063-1067.	6.5	70
41	Atomic Fe hetero-layered coordination between g-C ₃ N ₄ and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 1451-1458.	10.3	70
42	Atomic Fe Embedded in Carbon Nanoshells–Graphene Nanomeshes with Enhanced Oxygen Reduction Reaction Performance. Chemistry of Materials, 2017, 29, 9915-9922.	6.7	64
43	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€5witchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie, 2018, 130, 5105-5109.	2.0	63
44	A Substitutionâ€Dependent Lightâ€Up Fluorescence Probe for Selectively Detecting Fe ³⁺ Ions and Its Cell Imaging Application. Advanced Functional Materials, 2018, 28, 1802833.	14.9	62
45	Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis. Nature Communications, 2021, 12, 960.	12.8	62
46	BioAIEgens derived from rosin: how does molecular motion affect their photophysical processes in solid state?. Nature Communications, 2021, 12, 1773.	12.8	62
47	The unusual aggregation-induced emission of coplanar organoboron isomers and their lipid droplet-specific applications. Materials Chemistry Frontiers, 2018, 2, 1498-1507.	5.9	61
48	A New Strategy toward "Simple―Waterâ€6oluble AIE Probes for Hypoxia Detection. Advanced Functional Materials, 2019, 29, 1903278.	14.9	58
49	AIE Featured Inorganic–Organic Core@Shell Nanoparticles for High-Efficiency siRNA Delivery and Real-Time Monitoring. Nano Letters, 2019, 19, 2272-2279.	9.1	58
50	In Situ Electrospinning of Aggregationâ€Induced Emission Nanofibrous Dressing for Wound Healing. Small Methods, 2022, 6, e2101247.	8.6	57
51	1,2,5,6-Naphthalenediimide Based Donor–Acceptor Copolymers Designed from Isomer Chemistry for Organic Semiconducting Materials. Macromolecules, 2013, 46, 7705-7714.	4.8	56
52	Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes. Journal of the American Chemical Society, 2021, 143, 9468-9477.	13.7	52
53	Polyyne bridged AIE luminogens with red emission: design, synthesis, properties and applications. Journal of Materials Chemistry B, 2017, 5, 1650-1657.	5.8	50
54	Identification and characterization of IncRNA mediated transcriptional dysregulation dictates IncRNA roles in glioblastoma. Oncotarget, 2016, 7, 45027-45041.	1.8	48

#	Article	IF	CITATIONS
55	Less is more: Silver-AlE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials, 2020, 238, 119834.	11.4	48
56	Molecular Transmission: Visible and Rate-Controllable Photoreactivity and Synergy of Aggregation-Induced Emission and Host–Guest Assembly. Chemistry of Materials, 2019, 31, 1092-1100.	6.7	46
57	Photoresponsive spiro-polymers generated in situ by C–H-activated polyspiroannulation. Nature Communications, 2019, 10, 5483.	12.8	46
58	AIE-based energy transfer systems for biosensing, imaging, and therapeutics. TrAC - Trends in Analytical Chemistry, 2020, 122, 115743.	11.4	44
59	Dual-Ion-Mode MALDI MS Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Applied Materials & Interfaces, 2018, 10, 37732-37742.	8.0	43
60	The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO ₂ electrocatalyst. Green Chemistry, 2018, 20, 3521-3529.	9.0	43
61	Solutionâ€processed AlEgen NIR OLEDs with EQE Approaching 15 %. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
62	Three-Dimensional Framework of Graphene Nanomeshes Shell/Co ₃ O ₄ Synthesized as Superior Bifunctional Electrocatalyst for Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 41273-41283.	8.0	42
63	Unveiling the crucial contributions of electrostatic and dispersion interactions to the ultralong room-temperature phosphorescence of H-bond crosslinked poly(vinyl alcohol) films. Materials Horizons, 2022, 9, 1081-1088.	12.2	42
64	Cascade Polyannulation of Diyne and Benzoylacetonitrile: A New Strategy for Synthesizing Functional Substituted Poly(naphthopyran)s. Macromolecules, 2015, 48, 4241-4249.	4.8	40
65	Revisiting an ancient inorganic aggregationâ€induced emission system: An enlightenment to clusteroluminescence. Aggregate, 2021, 2, e36.	9.9	40
66	A cell membrane-targeting AIE photosensitizer as a necroptosis inducer for boosting cancer theranostics. Chemical Science, 2022, 13, 5929-5937.	7.4	40
67	Naphthalenediimides Fused with 2-(1,3-Dithiol-2-ylidene)acetonitrile: Strong Electron-Deficient Building Blocks for High-Performance n-Type Polymeric Semiconductors. ACS Macro Letters, 2014, 3, 1174-1177.	4.8	39
68	AlEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2297-2329.	11.7	39
69	LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns. Oncotarget, 2015, 6, 39793-39805.	1.8	38
70	Targeted Theranostics for Tuberculosis: A Rifampicin-Loaded Aggregation-Induced Emission Carrier for Granulomas Tracking and Anti-Infection. ACS Nano, 2020, 14, 8046-8058.	14.6	35
71	Aggregate Materials beyond AIEgens. Accounts of Materials Research, 2021, 2, 1251-1260.	11.7	35
72	An Intelligent AIEgen with Nonmonotonic Multiresponses to Multistimuli. Advanced Science, 2020, 7, 2001845.	11.2	34

#	Article	IF	CITATIONS
73	Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motionâ€Induced Photoâ€Hyperthermia for Cancer Therapy. Advanced Science, 2022, 9, e2104885.	11.2	34
74	Molecular core–shell structure design: Facilitating delayed fluorescence in aggregates toward highly efficient solutionâ€processed OLEDs. Aggregate, 2022, 3, .	9.9	33
75	Robust Serum Albumin-Responsive AlEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Applied Materials & Interfaces, 2019, 11, 17306-17312.	8.0	32
76	Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens. Chemical Science, 2020, 11, 8438-8447.	7.4	32
77	How do molecular interactions affect fluorescence behavior of AIEgens in solution and aggregate states?. Science China Chemistry, 2022, 65, 135-144.	8.2	31
78	Novel Dimethylmethyleneâ€Bridged Triphenylamineâ€PDI Acceptor for Bulkâ€Heterojunction Organic Solar Cells. Advanced Science, 2017, 4, 1700110.	11.2	30
79	One-Step Solid-Phase Extraction Procedure for F2-Isoprostanes. Clinical Chemistry, 2001, 47, 1306-1308.	3.2	28
80	Incorporation of benzothiadiazole into the backbone of 1,2,5,6-naphthalenediimide based copolymers, enabling much improved film crystallinity and charge carrier mobility. Polymer Chemistry, 2016, 7, 573-579.	3.9	28
81	Deep-Red Aggregation-Induced Emission Luminogen Based on Dithiofuvalene-Fused Benzothiadiazole for Lipid Droplet-Specific Imaging. , 2022, 4, 159-164.		28
82	Construction and analysis of dynamic transcription factor regulatory networks in the progression of glioma. Scientific Reports, 2015, 5, 15953.	3.3	27
83	Highly Sensitive Naked-Eye Assay for Enterovirus 71 Detection Based on Catalytic Nanoparticle Aggregation and Immunomagnetic Amplification. ACS Applied Materials & Interfaces, 2017, 9, 14691-14699.	8.0	27
84	Ratiometric Detection of Mitochondrial Thiol with a Two-Photon Active AlEgen. ACS Applied Bio Materials, 2019, 2, 3120-3127.	4.6	26
85	Visualizing semipermeability of the cell membrane using a pH-responsive ratiometric AlEgen. Chemical Science, 2020, 11, 5753-5758.	7.4	26
86	Detecting live bacteria instantly utilizing AIE strategies. Journal of Materials Chemistry B, 2018, 6, 5986-5991.	5.8	25
87	Antiviral and Antiâ€Inflammatory Treatment with Multifunctional Alveolar Macrophageâ€Like Nanoparticles in a Surrogate Mouse Model of COVIDâ€19. Advanced Science, 2021, 8, 2003556.	11.2	24
88	Vision Defense: Efficient Antibacterial AlEgens Induced Early Immune Response for Bacterial Endophthalmitis. Advanced Science, 2022, 9, .	11.2	24
89	Genome-Wide Methylome Analyses Reveal Novel Epigenetic Regulation Patterns in Schizophrenia and Bipolar Disorder. BioMed Research International, 2015, 2015, 1-15.	1.9	22
90	A Simple Approach to Achieve Organic Radicals with Unusual Solid-State Emission and Persistent Stability. CCS Chemistry, 2022, 4, 1912-1920.	7.8	20

#	Article	IF	CITATIONS
91	Oneâ€Pot Synthesis of Customized Metal–Phenolicâ€Networkâ€Coated AIE Dots for In Vivo Bioimaging. Advanced Science, 2022, 9, e2104997.	11.2	20
92	In Situ Generation of Red-Emissive AlEgens from Commercial Sources for Nondoped OLEDs. ACS Omega, 2018, 3, 16347-16356.	3.5	19
93	A visible-light-induced "on–off―one-pot synthesis of 3-arylacetylene coumarins with AlE properties. Organic and Biomolecular Chemistry, 2020, 18, 3346-3353.	2.8	17
94	Metallophilicity-Induced Clusterization: Single-Component White-Light Clusteroluminescence with Stimulus Response. CCS Chemistry, 2022, 4, 2570-2580.	7.8	17
95	Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms. Nanoscale, 2021, 13, 13610-13616.	5.6	15
96	Vision redemption: Self-reporting AlEgens for combined treatment of bacterial keratitis. Biomaterials, 2021, 279, 121227.	11.4	15
97	Monomer stoichiometry imbalance-promoted formation of multisubstituted polynaphthalenes by palladium-catalyzed polycouplings of aryl iodides and internal diynes. Polymer Chemistry, 2018, 9, 885-893.	3.9	14
98	The improvement of pitch activation by graphene for long-cycle Li–S batteries. Green Chemistry, 2018, 20, 4675-4683.	9.0	14
99	Bioâ€orthogonal AIE Dots Based on Polyyneâ€Bridged Redâ€emissive AIEgen for Tumor Metabolic Labeling and Targeted Imaging. Chemistry - an Asian Journal, 2019, 14, 770-774.	3.3	13
100	Synthesis of largely π-extended naphthalenediimides via C–H activation towards highly soluble and narrow band-gap organic optoelectronic materials. Organic Chemistry Frontiers, 2017, 4, 823-827.	4.5	12
101	Turning on Light Emission of a Dark Proâ€Aggregationâ€Induced Emission Luminogen in Aqueous Media Through Reductaseâ€Modulated Derotation. Advanced NanoBiomed Research, 2021, 1, 2000080.	3.6	12
102	Achieving diversified emissive behaviors of AIE, TADF, RTP, dual-RTP and mechanoluminescence from simple organic molecules by positional isomerism. Journal of Materials Chemistry C, 2022, 10, 10009-10016.	5.5	11
103	Carbazolo[2,1-a]carbazole Diimide: A Building Block for Organic Electronic Materials. ChemPlusChem, 2015, 80, 57-61.	2.8	10
104	New Ï€â€Extended Naphthalene Diimides for Highâ€Performance nâ€Type Organic Semiconductors with NIR Absorption Properties. Asian Journal of Organic Chemistry, 2018, 7, 2279-2284.	2.7	10
105	AIE study: a stepping stone to aggregate science. National Science Review, 2021, 8, nwab079.	9.5	10
106	Natural products with aggregation-induced emission properties: from discovery to their multifunctional applications. Scientia Sinica Chimica, 2022, 52, 1524-1546.	0.4	10
107	PD_NGSAtlas: a reference database combining next-generation sequencing epigenomic and transcriptomic data for psychiatric disorders. BMC Medical Genomics, 2014, 7, 71.	1.5	9
108	Tuning the Charge Transport Property of Naphthalene Diimide Derivatives by Changing the Substituted Position of Fluorine Atom on Molecular Backbone. Chinese Journal of Chemistry, 2014, 32, 1057-1064.	4.9	9

#	Article	IF	CITATIONS
109	Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angewandte Chemie, 2022, 134, .	2.0	9
110	Tetracyanodibenzotetrathiafulvalene Diimides: Design, Synthesis, and Property Study. Journal of Organic Chemistry, 2013, 78, 12214-12219.	3.2	8
111	Yolk-shell Ni/NiO anchored on N-doped graphene synthesized as dual-ion MALDI matrix for detecting and imaging bioactive small molecules. Journal of Colloid and Interface Science, 2022, 613, 285-296.	9.4	8
112	Single-fluorogen polymers with color-tunable aggregation-induced emission. Matter, 2021, 4, 2587-2589.	10.0	7
113	A brightly red emissive AlEgen and its antibody conjugated nanoparticles for cancer cell targeting imaging. Materials Chemistry Frontiers, 2022, 6, 1317-1323.	5.9	6
114	AlEgens in Solar Energy Utilization: Advances and Opportunities. Langmuir, 2022, 38, 8719-8732.	3.5	6
115	A divergent and stereoselective synthetic strategy for tetraarylethylene-based AIEgens. National Science Review, 2021, 8, nwab015.	9.5	5
116	Solutionâ€processed AIEgen NIR OLEDs with EQE Approaching 15 %. Angewandte Chemie, 2022, 134, .	2.0	5
117	A Context Aware Automatic Traffic Notification System for Cell Phones. , 2007, , .		3
118	Integrating Knowledge in Search of Biologically Relevant Genes. , 2009, , .		0