Mark A Brenckle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5045708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.	6.0	1,085
2	Silkâ€Based Conformal, Adhesive, Edible Food Sensors. Advanced Materials, 2012, 24, 1067-1072.	11.1	335
3	Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17385-17389.	3.3	281
4	All-water-based electron-beam lithography using silk as a resist. Nature Nanotechnology, 2014, 9, 306-310.	15.6	245
5	Metamaterials on Paper as a Sensing Platform. Advanced Materials, 2011, 23, 3197-3201.	11.1	210
6	Implantable, multifunctional, bioresorbable optics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19584-19589.	3.3	112
7	A Biomimetic Composite from Solution Selfâ€Assembly of Chitin Nanofibers in a Silk Fibroin Matrix. Advanced Materials, 2013, 25, 4482-4487.	11.1	110
8	Materials for Programmed, Functional Transformation in Transient Electronic Systems. Advanced Materials, 2015, 27, 47-52.	11.1	81
9	Proteinâ€Protein Nanoimprinting of Silk Fibroin Films. Advanced Materials, 2013, 25, 2409-2414.	11.1	78
10	An Analytical Model of Reactive Diffusion for Transient Electronics. Advanced Functional Materials, 2013, 23, 3106-3114.	7.8	74
11	Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets. ACS Applied Materials & Interfaces, 2015, 7, 19870-19875.	4.0	66
12	Focal Infection Treatment using Laserâ€Mediated Heating of Injectable Silk Hydrogels with Gold Nanoparticles. Advanced Functional Materials, 2012, 22, 3793-3798.	7.8	51
13	Evaluation of the Spectral Response of Functionalized Silk Inverse Opals as Colorimetric Immunosensors. ACS Applied Materials & Interfaces, 2016, 8, 16218-16226.	4.0	32
14	Methods and Applications of Multilayer Silk Fibroin Laminates Based on Spatially Controlled Welding in Protein Films. Advanced Functional Materials, 2016, 26, 44-50.	7.8	26
15	Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices. Applied Physics Letters, 2010, 97, 123702.	1.5	24
16	Interface Control of Semicrystalline Biopolymer Films through Thermal Reflow. Biomacromolecules, 2013, 14, 2189-2195.	2.6	9
17	Direct Transfer Printing of Water Hydrolyzable Metals onto Silk Fibroin Substrates through Thermalâ€Reflowâ€Based Adhesion. Advanced Materials Interfaces, 2016, 3, 1600094.	1.9	9
18	Transient Electronics: Materials for Programmed, Functional Transformation in Transient Electronic Systems (Adv. Mater. 1/2015). Advanced Materials, 2015, 27, 187-187.	11.1	3

#	Article	IF	CITATIONS
19	Biomimetics: A Biomimetic Composite from Solution Selfâ€Assembly of Chitin Nanofibers in a Silk Fibroin Matrix (Adv. Mater. 32/2013). Advanced Materials, 2013, 25, 4528-4528.	11.1	1
20	Nanoimprinting: Proteinâ€Protein Nanoimprinting of Silk Fibroin Films (Adv. Mater. 17/2013). Advanced Materials, 2013, 25, 2378-2378.	11.1	1