Frank Barry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5045651/publications.pdf Version: 2024-02-01

FDANK RADDY

#	Article	IF	CITATIONS
1	GMP-Compliant Production of Autologous Adipose-Derived Stromal Cells in the NANT 001 Closed Automated Bioreactor. Frontiers in Bioengineering and Biotechnology, 2022, 10, 834267.	2.0	3
2	Chondrocytes derived from pluripotent stem cells. , 2021, , 55-80.		0
3	Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nature Reviews Rheumatology, 2021, 17, 158-175.	3.5	125
4	miR-155 Contributes to the Immunoregulatory Function of Human Mesenchymal Stem Cells. Frontiers in Immunology, 2021, 12, 624024.	2.2	7
5	Fungi populate deepâ€ s ea coral gardens as well as marine sediments in the Irish Atlantic Ocean. Environmental Microbiology, 2021, 23, 4168-4184.	1.8	19
6	Deep-Sea Coral Garden Invertebrates and Their Associated Fungi Are Genetic Resources for Chronic Disease Drug Discovery. Marine Drugs, 2021, 19, 390.	2.2	8
7	American Society for Bone and Mineral Researchâ€Orthopaedic Research Society Joint Task Force Report on Cellâ€Based Therapies. Journal of Bone and Mineral Research, 2020, 35, 3-17.	3.1	11
8	Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Research and Therapy, 2020, 11, 116.	2.4	24
9	A Novel High-Throughput Screening Platform Identifies Itaconate Derivatives from Marine Penicillium antarcticum as Inhibitors of Mesenchymal Stem Cell Differentiation. Marine Drugs, 2020, 18, 192.	2.2	11
10	American Society for Bone and Mineral Researchâ€Orthopaedic Research Society Joint Task Force Report on Cellâ€Based Therapies – Secondary Publication. Journal of Orthopaedic Research, 2020, 38, 485-502.	1.2	7
11	Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KCF-dependent mechanism. Intensive Care Medicine Experimental, 2020, 8, 8.	0.9	18
12	Mesenchymal Stem Cell Based Regenerative Treatment of the Knee: From Basic Science to Clinics. Stem Cells International, 2019, 2019, 1-1.	1.2	4
13	Hypoxia Activates the PTHrP –MEF2C Pathway to Attenuate Hypertrophy in Mesenchymal Stem Cell Derived Cartilage. Scientific Reports, 2019, 9, 13274.	1.6	22
14	Mesenchymal Stem Cell Therapy for Osteoarthritis: The Critical Role of the Cell Secretome. Frontiers in Bioengineering and Biotechnology, 2019, 7, 9.	2.0	155
15	MSC Therapy for Osteoarthritis: An Unfinished Story. Journal of Orthopaedic Research, 2019, 37, 1229-1235.	1.2	69
16	Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells, 2019, 37, 754-765.	1.4	60
17	Combinatorial conditioning of adipose derivedâ€nesenchymal stem cells enhances their neurovascular potential: Implications for intervertebral disc degeneration. JOR Spine, 2019, 2, e1072.	1.5	10
18	Marine Collagen Substrates for 2D and 3D Ovarian Cancer Cell Systems. Frontiers in Bioengineering and Biotechnology, 2019, 7, 343.	2.0	27

FRANK BARRY

#	Article	IF	CITATIONS
19	Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy, 2019, 21, 289-306.	0.3	107
20	Optimizing fluorescent protein expression for quantitative fluorescence microscopy and spectroscopy using herpes simplex thymidine kinase promoter sequences. FEBS Open Bio, 2018, 8, 1043-1060.	1.0	14
21	Generation of induced pluripotent stem cells (ARO-iPSC1-11) from a patient with autosomal recessive osteopetrosis harboring the c.212 + 1G > T mutation in SNX10 gene. Stem Cell Research, 2017, 24, 51-54.	0.3	9
22	Application of biomaterials to in vitro pluripotent stem cell disease modeling of the skeletal system. Journal of Materials Chemistry B, 2016, 4, 3482-3489.	2.9	7
23	Chondrocytes Derived From Mesenchymal Stromal Cells and Induced Pluripotent Cells of Patients With Familial Osteochondritis Dissecans Exhibit an Endoplasmic Reticulum Stress Response and Defective Matrix Assembly. Stem Cells Translational Medicine, 2016, 5, 1171-1181.	1.6	32
24	Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Research and Therapy, 2016, 7, 166.	2.4	74
25	Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Translational Medicine, 2016, 5, 847-856.	1.6	389
26	Differentiation of Vascular Stem Cells Contributes to Ectopic Calcification of Atherosclerotic Plaque. Stem Cells, 2016, 34, 913-923.	1.4	38
27	Donorâ€derived equine mesenchymal stem cells suppress proliferation of mismatched lymphocytes. Equine Veterinary Journal, 2016, 48, 253-260.	0.9	28
28	Culture expanded primary chondrocytes have potent immunomodulatory properties and do not induce an allogeneic immune response. Osteoarthritis and Cartilage, 2016, 24, 521-533.	0.6	23
29	Evaluation of the Early In Vivo Response of a Functionally Graded Macroporous Scaffold in an Osteochondral Defect in a Rabbit Model. Annals of Biomedical Engineering, 2016, 44, 1832-1844.	1.3	12
30	ROCK activity and the $G\hat{I}^{2}\hat{I}^{3}$ complex mediate chemotactic migration of mouse bone marrow-derived stromal cells. Stem Cell Research and Therapy, 2015, 6, 136.	2.4	10
31	Bone Marrow-Derived Mesenchymal Stem Cells Have Innate Procoagulant Activity and Cause Microvascular Obstruction Following Intracoronary Delivery: Amelioration by Antithrombin Therapy. Stem Cells, 2015, 33, 2726-2737.	1.4	97
32	Thermoresponsive Substrates Used for the Growth and Controlled Differentiation of Human Mesenchymal Stem Cells. Macromolecular Rapid Communications, 2015, 36, 1897-1901.	2.0	10
33	Radiation-Induced Alterations of Osteogenic and Chondrogenic Differentiation of Human Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0119334.	1.1	14
34	Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax, 2015, 70, 625-635.	2.7	163
35	Cellular Chondroplasty: A New Technology for Joint Regeneration. Journal of Knee Surgery, 2015, 28, 045-050.	0.9	8
36	Pullulan: a new cytoadhesive for cell-mediated cartilage repair. Stem Cell Research and Therapy, 2015, 6, 34.	2.4	38

FRANK BARRY

#	Article	IF	CITATIONS
37	Chondrogenic Differentiation Increases Antidonor Immune Response to Allogeneic Mesenchymal Stem Cell Transplantation. Molecular Therapy, 2014, 22, 655-667.	3.7	76
38	A chondromimetic microsphere for in situ spatially controlled chondrogenic differentiation of human mesenchymal stem cells. Journal of Controlled Release, 2014, 179, 42-51.	4.8	34
39	Primary cilium-associated genes mediate bone marrow stromal cell response to hypoxia. Stem Cell Research, 2014, 13, 284-299.	0.3	16
40	Basic fibroblast growth factor modifies the hypoxic response of human bone marrow stromal cells by ERK-mediated enhancement of HIF-1α activity. Stem Cell Research, 2014, 12, 646-658.	0.3	19
41	Mesenchymal stem cells in joint disease and repair. Nature Reviews Rheumatology, 2013, 9, 584-594.	3.5	344
42	Enhancing the Mesenchymal Stem Cell Therapeutic Response: Cell Localization and Support for Cartilage Repair. Tissue Engineering - Part B: Reviews, 2013, 19, 58-68.	2.5	32
43	Growth Differentiation Factor-5 Enhances In Vitro Mesenchymal Stromal Cell Chondrogenesis and Hypertrophy. Stem Cells and Development, 2013, 22, 1968-1976.	1.1	75
44	Genetic mismatch affects the immunosuppressive properties of mesenchymal stem cells in vitro and their ability to influence the course of collagen-induced arthritis. Arthritis Research and Therapy, 2012, 14, R167.	1.6	32
45	8 Ossification of atherosclerotic plaque: the role of vessel derived stem cells. Heart, 2011, 97, e7-e7.	1.2	1
46	Developing Cell-Specific Antibodies to Endothelial Progenitor Cells Using Avian Immune Phage Display Technology. Journal of Biomolecular Screening, 2011, 16, 744-754.	2.6	10
47	Mesenchymal Stem Cells and Osteoarthritis: Remedy or Accomplice?. Human Gene Therapy, 2010, 21, 1239-1250.	1.4	62
48	Comparison of Viral and Nonviral Vectors for Gene Transfer to Human Endothelial Progenitor Cells. Tissue Engineering - Part C: Methods, 2009, 15, 223-231.	1.1	25
49	Endothelial progenitor cells for the treatment of diabetic vasculopathy: panacea or Pandora's box?. Diabetes, Obesity and Metabolism, 2008, 10, 353-366.	2.2	15
50	Endothelial progenitor cells: diagnostic and therapeutic considerations. BioEssays, 2006, 28, 261-270.	1.2	84
51	Immunogenicity of Adult Mesenchymal Stem Cells: Lessons from the Fetal Allograft. Stem Cells and Development, 2005, 14, 252-265.	1.1	179
52	Mesenchymal stem cells: clinical applications and biological characterization. International Journal of Biochemistry and Cell Biology, 2004, 36, 568-584.	1.2	1,455
53	Stem cell therapy in a caprine model of osteoarthritis. Arthritis and Rheumatism, 2003, 48, 3464-3474.	6.7	947
54	Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis and Rheumatism, 2002, 46, 704-713.	6.7	471

#	Article	IF	CITATIONS
55	The SH-3 and SH-4 Antibodies Recognize Distinct Epitopes on CD73 from Human Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 2001, 289, 519-524.	1.0	226
56	The Monoclonal Antibody SH-2, Raised against Human Mesenchymal Stem Cells, Recognizes an Epitope on Endoglin (CD105). Biochemical and Biophysical Research Communications, 1999, 265, 134-139.	1.0	361