Bernard Ghanem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5045448/publications.pdf

Version: 2024-02-01

115
papers

9,153 citations

257357 24 h-index 53 g-index

117 all docs

117 docs citations

117 times ranked 4983 citing authors

#	Article	IF	CITATIONS
1	DeepGCNs: Making GCNs Go as Deep as CNNs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 6923-6939.	9.7	46
2	AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation. IEEE Transactions on Multimedia, 2022, 24, 4077-4091.	5.2	25
3	Scaling up SoccerNet with multi-view spatial localization and re-identification. Scientific Data, 2022, 9, .	2.4	12
4	Characterization of a thermostable Cas13 enzyme for one-pot detection of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
5	KGSNet: Key-Point-Guided Super-Resolution Network for Pedestrian Detection in the Wild. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 2251-2265.	7.2	12
6	RefineLoc: Iterative Refinement for Weakly-Supervised Action Localization., 2021,,.		19
7	Shape-Preserving Stereo Object Remapping via Object-Consistent Grid Warping. IEEE Transactions on Image Processing, 2021, 30, 5889-5904.	6.0	O
8	SeedQuant: a deep learning-based tool for assessing stimulant and inhibitor activity on root parasitic seeds. Plant Physiology, 2021, 186, 1632-1644.	2.3	21
9	BAOD: Budget-Aware Object Detection. , 2021, , .		3
10	SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos. , 2021, , .		57
11	Camera Calibration and Player Localization in SoccerNet-v2 and Investigation of their Representations for Action Spotting. , 2021, , .		31
12	Temporally-Aware Feature Pooling for Action Spotting in Soccer Broadcasts. , 2021, , .		24
13	APES: Audiovisual Person Search in Untrimmed Video., 2021,,.		3
14	Customized Summarizations of Visual Data Collections. Computer Graphics Forum, 2021, 40, 347-370.	1.8	0
15	MAIN: Multi-Attention Instance Network for video segmentation. Computer Vision and Image Understanding, 2021, 210, 103240.	3.0	0
16	PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks., 2021,,.		94
17	VLG-Net: Video-Language Graph Matching Network for Video Grounding. , 2021, , .		23
18	Relation-aware Video Reading Comprehension for Temporal Language Grounding., 2021,,.		16

#	Article	IF	CITATIONS
19	TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks., 2021,,.		49
20	Boundary-sensitive Pre-training for Temporal Localization in Videos., 2021,,.		31
21	Video Self-Stitching Graph Network for Temporal Action Localization. , 2021, , .		57
22	MAAS: Multi-modal Assignation for Active Speaker Detection. , 2021, , .		14
23	MVTN: Multi-View Transformation Network for 3D Shape Recognition. , 2021, , .		60
24	High Quality Disparity Remapping with Two-Stage Warping. , 2021, , .		2
25	Beyond Weakly Supervised: Pseudo Ground Truths Mining for Missing Bounding-Boxes Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 983-997.	5.6	12
26	Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42, 2148-2164.	9.7	24
27	Guess where? Actor-supervision for spatiotemporal action localization. Computer Vision and Image Understanding, 2020, 192, 102886.	3.0	9
28	SGAS: Sequential Greedy Architecture Search., 2020,,.		87
29	Active Speakers in Context. , 2020, , .		25
30	A Context-Aware Loss Function for Action Spotting in Soccer Videos. , 2020, , .		41
31	G-TAD: Sub-Graph Localization for Temporal Action Detection. , 2020, , .		220
32	MAP Inference Via \$\$ell _2\$\$-Sphere Linear Program Reformulation. International Journal of Computer Vision, 2020, 128, 1913-1936.	10.9	2
33	AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds. Lecture Notes in Computer Science, 2020, , 241-257.	1.0	49
34	Towards Analyzing Semantic Robustness of Deep Neural Networks. Lecture Notes in Computer Science, 2020, , 22-38.	1.0	6
35	Multi-task Generative Adversarial Network for Detecting Small Objects in the Wild. International Journal of Computer Vision, 2020, 128, 1810-1828.	10.9	23
36	A Stochastic Derivative-Free Optimization Method with Importance Sampling: Theory and Learning to Control. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 3275-3282.	3.6	4

#	Article	IF	CITATIONS
37	SADA: Semantic Adversarial Diagnostic Attacks for Autonomous Applications. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 10901-10908.	3.6	8
38	p-Box ADMM: A Versatile Framework for Integer Programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 1695-1708.	9.7	58
39	Learning a strong detector for action localization in videos. Pattern Recognition Letters, 2019, 128, 407-413.	2.6	8
40	Teaching UAVs to Race: End-to-End Regression of Agile Controls in Simulation. Lecture Notes in Computer Science, 2019, , 11-29.	1.0	11
41	Detecting small faces in the wild based on generative adversarial network and contextual information. Pattern Recognition, 2019, 94, 74-86.	5.1	24
42	Leveraging Shape Completion for 3D Siamese Tracking. , 2019, , .		89
43	A Novel Framework for Robustness Analysis of Visual QA Models. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 8449-8456.	3.6	15
44	DeepGCNs: Can GCNs Go As Deep As CNNs?., 2019,,.		606
45	TV: A Sparse Optimization Method for Impulse Noise Image Restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 352-364.	9.7	58
46	Multi-label Learning with Missing Labels Using Mixed Dependency Graphs. International Journal of Computer Vision, 2018, 126, 875-896.	10.9	60
47	Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications. International Journal of Computer Vision, 2018, 126, 902-919.	10.9	98
48	Representation learning with deep extreme learning machines for efficient image set classification. Neural Computing and Applications, 2018, 30, 1211-1223.	3.2	34
49	W2F: A Weakly-Supervised to Fully-Supervised Framework for Object Detection. , 2018, , .		75
50	Tagging Like Humans: Diverse and Distinct Image Annotation. , 2018, , .		40
51	SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos. , 2018, , .		91
52	Finding Tiny Faces in the Wild with Generative Adversarial Network. , 2018, , .		118
53	TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild. Lecture Notes in Computer Science, 2018, , 310-327.	1.0	391
54	Weakly-supervised object detection via mining pseudo ground truth bounding-boxes. Pattern Recognition, 2018, 84, 68-81.	5.1	27

#	Article	IF	Citations
55	Action Search: Spotting Actions in Videos and Its Application to Temporal Action Localization. Lecture Notes in Computer Science, 2018, , 253-269.	1.0	44
56	What Do I Annotate Next? An Empirical Study of Active Learning for Action Localization. Lecture Notes in Computer Science, 2018, , 212-229.	1.0	22
57	SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network. Lecture Notes in Computer Science, 2018, , 210-226.	1.0	192
58	Diagnosing Error in Temporal Action Detectors. Lecture Notes in Computer Science, 2018, , 264-280.	1.0	38
59	SCC: Semantic Context Cascade for Efficient Action Detection. , 2017, , .		60
60	Context-Aware Correlation Filter Tracking. , 2017, , .		433
61	SST: Single-Stream Temporal Action Proposals. , 2017, , .		286
62	Diverse Image Annotation. , 2017, , .		22
63	SAR: Stroke Authorship Recognition. Computer Graphics Forum, 2016, 35, 73-86.	1.8	4
64	In Defense of Sparse Tracking: Circulant Sparse Tracker. , 2016, , .		92
65	Fast Temporal Activity Proposals for Efficient Detection of Human Actions in Untrimmed Videos. , 2016,		178
66	Persistent Aerial Tracking system for UAVs. , 2016, , .		45
67	Target Response Adaptation for Correlation Filter Tracking. Lecture Notes in Computer Science, 2016, , 419-433.	1.0	107
68	Facial action unit recognition under incomplete data based on multi-label learning with missing labels. Pattern Recognition, 2016, 60, 890-900.	5.1	32
69	Fish identification from videos captured in uncontrolled underwater environments. ICES Journal of Marine Science, 2016, 73, 2737-2746.	1.2	52
70	A Benchmark and Simulator for UAV Tracking. Lecture Notes in Computer Science, 2016, , 445-461.	1.0	808
71	The Visual Object Tracking VOT2016 Challenge Results. Lecture Notes in Computer Science, 2016, , 777-823.	1.0	312
72	3D Part-Based Sparse Tracker with Automatic Synchronization and Registration., 2016,,.		41

#	Article	IF	Citations
73	Robust Visual Tracking via Exclusive Context Modeling. IEEE Transactions on Cybernetics, 2016, 46, 51-63.	6.2	48
74	Large Scale Asset Extraction for Urban Images. Lecture Notes in Computer Science, 2016, , 437-452.	1.0	4
75	DAPs: Deep Action Proposals for Action Understanding. Lecture Notes in Computer Science, 2016, , 768-784.	1.0	197
76	What Makes an Object Memorable?. , 2015, , .		70
77	Template Assembly for Detailed Urban Reconstruction. Computer Graphics Forum, 2015, 34, 217-228.	1.8	24
78	Designing Camera Networks by Convex Quadratic Programming. Computer Graphics Forum, 2015, 34, 69-80.	1.8	9
79	ActivityNet: A large-scale video benchmark for human activity understanding. , 2015, , .		1,148
80	Intrinsic Scene Decomposition from RGB-D Images. , 2015, , .		27
81	The Visual Object Tracking VOT2015 Challenge Results. , 2015, , .		134
82	ML-MG: Multi-label Learning with Missing Labels Using a Mixed Graph. , 2015, , .		64
83	On the relationship between visual attributes and convolutional networks. , 2015, , .		62
84	Multi-template Scale-Adaptive Kernelized Correlation Filters. , 2015, , .		34
85	Robust Manhattan Frame estimation from a single RGB-D image. , 2015, , .		25
86	Action Recognition Using Discriminative Structured Trajectory Groups., 2015,,.		12
87	Structural Sparse Tracking. , 2015, , .		124
88	$$\alpha = 13; \t 0.013; \t 0.$		13
89	Robust Visual Tracking Via Consistent Low-Rank Sparse Learning. International Journal of Computer Vision, 2015, 111, 171-190.	10.9	274
90	3D Aware Correction and Completion of Depth Maps in Piecewise Planar Scenes. Lecture Notes in Computer Science, 2015, , 226-241.	1.0	1

#	Article	IF	Citations
91	Camera Motion and Surrounding Scene Appearance as Context for Action Recognition. Lecture Notes in Computer Science, 2015, , 583-597.	1.0	2
92	Exploring the visual components that make an image memorable. Journal of Vision, 2015, 15, 944.	0.1	0
93	Improving head and body pose estimation through semi-supervised manifold alignment. , 2014, , .		3
94	Recognizing Team Formation in American Football. Advances in Computer Vision and Pattern Recognition, 2014, , 271-291.	0.9	2
95	BILGO: Bilateral greedy optimization for large scale semidefinite programming. Neurocomputing, 2014, 127, 247-257.	3.5	2
96	Occlusion Detection via Structured Sparse Learning for Robust Object Tracking. Advances in Computer Vision and Pattern Recognition, 2014, , 93-112.	0.9	0
97	Modeling dynamic swarms. Computer Vision and Image Understanding, 2013, 117, 1-11.	3.0	2
98	Low-rank quadratic semidefinite programming. Neurocomputing, 2013, 106, 51-60.	3.5	3
99	Object Tracking by Occlusion Detection via Structured Sparse Learning. , 2013, , .		21
100	Automatic Recognition of Offensive Team Formation in American Football Plays. , 2013, , .		18
101	Low-Rank Sparse Coding for Image Classification. , 2013, , .		98
102	Robust Visual Tracking via Structured Multi-Task Sparse Learning. International Journal of Computer Vision, 2013, 101, 367-383.	10.9	451
103	A Topic Model Approach to Representing and Classifying Football Plays. , 2013, , .		5
104	Robust multi-object tracking via cross-domain contextual information for sports video analysis. , 2012, , .		31
105	Robust visual tracking via multi-task sparse learning. , 2012, , .		208
106	Low-Rank Sparse Learning for Robust Visual Tracking. Lecture Notes in Computer Science, 2012, , 470-484.	1.0	151
107	Dinkelbach NCUT: An Efficient Framework for Solving Normalized Cuts Problems with Priors and Convex Constraints. International Journal of Computer Vision, 2010, 89, 40-55.	10.9	14
108	Sparse Coding of Linear Dynamical Systems with an Application to Dynamic Texture Recognition. , 2010, , .		15

#	ARTICLE	IF	CITATIONS
109	Maximum Margin Distance Learning for Dynamic Texture Recognition. Lecture Notes in Computer Science, 2010, , 223-236.	1.0	70
110	Reduction of lymph tissue false positives in pulmonary embolism detection. , 2008, , .		1
111	Segmentation-based Perceptual Image Quality Assessment (SPIQA). , 2008, , .		7
112	Extracting a fluid dynamic texture and the background from video. , 2008, , .		11
113	Phase Based Modelling of Dynamic Textures. , 2007, , .		30
114	Phase PCA for Dynamic Texture Video Compression. , 2007, , .		8
115	OIL: Observational Imitation Learning. , 0, , .		16